[1]Billur E, Berglund G, Gustafsson T. History and Future Outlook of Hot Stamping[M]. Switzerland: Springer International Publishing, 2019.
[2]Berglund G. The history of hardening of boron steel in northern Sweden[A]. The 1st International Conference on Hot Sheet Metal Forming of High-Performance Steel [C]. Sweden,2008.
[3]Mori K. Hot stamping of ultra-high strength steel parts[J]. Journal of the Japan Society for Technology of Plasticity,2017, 58(673): 125-129.
[4]Karbasian H, Tekkaya A E. A review on hot stamping[J]. Journal of Materials Processing Technology,2010, 210(15): 2103-2118.
[5]Mori K, Bariani P F, Behrens B A, et al. Hot stamping of ultra-high strength steel parts[J]. CIRP Annals,2017, 66(2): 755-777.
[6]Suehiro M, Maki J, Kusumi K, et al. Properties of aluminized steels for hot-forming[A]. International Body Engineering Conference & Exposition[C]. USA, 2003.
[7]Bariani P F, Bruschi S, Ghiotti A, et al. Hot stamping of AA5083 aluminium alloy sheets[J]. CIRP Annals, 2013, 62(1): 251-254.
[8]Miller W S, Zhuang L, Bottema J, et al. Recent development in aluminium alloys for the automotive industry[J]. Materials Science & Engineering A,2000, 280(1): 37-49.
[9]董学锋. 车身材料与车身轻量化[J]. 汽车工艺与材料,2017, (7): 1-18.
Dong X F. Body material and body lightweight [J]. Automobile Technology & Material, 2017,(7):1-18.
[10]王帅, 孙洋. 新能源汽车轻量化技术路线和应用策略[J]. 汽车实用技术,2019,(10): 38-40, 57.
Wang S, Sun Y. New energy vehicle lightweight technology route and application strategy [J]. Automobile Applied Technology, 2019,(10):38-40, 57.
[11]Garrett R P, Lin J, Dean T A. Solution heat treatment and cold die quenching in forming AA 6xxx sheet components: Feasibility study[J]. Advanced Materials Research, 2005, 6-8: 673-680.
[12]Harrison N R, Luckey S G. Hot stamping of a b-pillar outer from high strength aluminum sheet AA7075[J]. SAE International Journal of Materials and Manufacturing,2014, 7(3): 567-573.
[13]Vergne C, Boher C, Gras R, et al. Influence of oxides on friction in hot rolling: Experimental investigations and tribological modelling[J]. Wear, 2006, 260(9-10): 957-975.
[14]Mozgovoy S, Hardell J, Deng L, et al. Tribological behavior of tool steel under press hardening conditions using simulative tests[J]. Journal of Tribology,2017, 140: 1-14.
[15]Hernandez S, Hardell J, Courbon C, et al. High temperature friction and wear mechanism map for tool steel and boron steel tribopair[J]. Tribology-Materials, Surfaces & Interfaces, 2014, 8(2): 74-84.
[16]Mozgovoy S, Hardell J, Prakash B. High temperature friction and wear performance of PVD coatings under press hardening contact conditions[J]. Advances in Tribology, 2019, (1): 1-15.
[17]Hardell J, Prakash B. High-temperature friction and wear behaviour of different tool steels during sliding against Al-Si-coated high-strength steel[J]. Tribology International, 2008, 41(7): 663-671.
[18]Yanagida A, Azushima A. Evaluation of coefficients of friction in hot stamping by hot flat drawing test[J]. CIRP Annals-Manufacturing Technology, 2009, 58(1): 247-250.
[19]王伟, 孔俊超,顾伟,等. 温成形摩擦界面粉末润滑层宏微观特性的试验研究[J]. 摩擦学学报, 2016, 36(2): 233-239.
Wang W, Kong J C, Gu W, et al. Experimental study on macro and micro characteristics of powder lubricant layer in frictional warm interface[J]. Tribology, 2016, 36(2):233-239.
[20]张伟, 张毅,昌晶晶. B1500HS硼钢800 ℃冲压界面粉末润滑特性研究[J]. 制造技术与机床, 2019,(9): 106-110.
Zhang W, Zhang Y, Chang J J. Investigation about power lubrication characteristics on the interface during 800 ℃ stamping of steel B1500HS[J]. Test and Quality, 2019,(9):106-110.
[21]Ghiotti A, Bruschi S, Medea F. Wear onset in hot stamping of aluminium alloys sheets[J]. Wear, 2017, 376-377: 484-495.
[22]Dessain C, Hein P, Wilsius J E L, et al. Experimental investigation of friction and wear in hot stamping of Usibor 1500P[A]. Proceedings of the 1st International Conference on Hot Sheet Metal Forming of High-Performance Steel[C]. Kassel, 2008.
[23]Decrozant-Triquenaux J, Pelcastre L, Courbon C, et al. Tribological behaviour of PVD coated tool steels in hot forming of aluminium alloys[A]. Proceedings of the 7th International Conference on Hot Sheet Metal Forming of High-Performance Steel[C]. Lulea, 2019.
[24]Decrozant-Triquenaux J, Pelcastre L, Courbon C, et al. Effect of surface engineered tool steel and lubrication on aluminium transfer at high temperature[J]. Wear,2021,477: 203879.
[25]Mozgovoy S, Hardell J, Deng L, et al. Effect of temperature on friction and wear of prehardened tool steel during sliding against 22MnB5 steel[J]. Tribology-Materials, Surfaces & Interfaces,2014, 8(2): 65-73.
[26]白植雄, 左鹏鹏,计杰,等. 两种热作模具钢的高温摩擦磨损性能[J]. 工程科学学报,2019, 41(7): 906-913.
Bai Z X, Zuo P P, Ji J, et al. High temperature friction and wear properties of two hot work die steels[J]. Chinese Journal of Engineering, 2019, 41(7): 906-913.
[27]王义林, 刘勇,耿会程,等. 高强铝合金热冲压成形技术研究进展[J]. 航空制造技术, 2019,(16): 22-35.
Wang Y L, Liu Y, Geng H C, et al. Research progress of hot stamping technology for high strength aluminum alloys[J]. Aeronautical Manufacturing Technology, 2019, (16): 22-25.
[28]江福椿, 高凯翔,王武荣. 用于模拟热冲压成形过程的数显式高温摩擦磨损试验机的研制[J]. 上海金属, 2019, 14(2): 99-104.
Jiang F C, Gao K X, Wang W R. Development of a digital high-temperature friction and wear tester for simulating hot-stamping process[J]. Shanghai Metals, 2019, 14(2): 99-104.
[29]高凯翔, 王武荣,韦习成,等. 22MnB5硼钢裸板热成形中的高温摩擦[J]. 上海交通大学学报, 2019, 53(9): 1136-1142.
Gao K X, Wang W R, Wei X C, et al. High-temperature friction of uncoated 22MnB5 boron steel in hot stamping[J], Journal of Shanghai Jiao Tong University, 2019, 53(9): 1136-1142.
[30]Tian X W, Zhang Y S, Wang Z, et al. Design of a tribo-simulator for the high strength steel friction and wear investigation in hot stamping[J]. Advanced Materials Research,2011, 421: 147-150.
[31]Yanagida A, Kurihara T, Azushima A. Development of tribo-simulator for hot stamping[J]. Journal of Materials Processing Technology, 2010, 210(3): 456-460.
[32]Deng L, Mozgovoy S, Hardell J, et al. Development of a tribological test programme based on press hardening simulations[J]. Tribology Letters,2017, 65(2): 43-54.
[33]Heide E V D, Schipper D J. Galling initiation due to frictional heating[J]. Wear, 2003, 254(11): 1127-1133.
[34]Patrik Karlsson, Pavel Krakhmalev, Anders Grd, et al. Influence of work material proof stress and tool steel microstructure on galling initiation and critical contact pressure[J]. Tribology International,2013, 60: 104-110.
[35]蒋斌, 吴晓春. 热冲模零件摩擦磨损行为研究[J]. 模具工业, 2019, 45(12): 1-6.
Jiang B, Wu X C. Research on friction and wear behavior of hot stamping die part[J]. Die & Mould Industry, 2019, 45(12): 1-6.
[36]聂昕, 肖兵兵,申丹凤,等. 考虑变形热和摩擦热效应的热力耦合冲压研究[J]. 中国机械工程, 2020, 31(16): 2005-2015.
Nie X, Xiao B B, Shen F D, et al. Research on thermal-mechanical stamping forming considering deformation heat and friction heat effects[J]. China Mechanical Engineering, 2020, 31(16): 2005-2015.
[37]苏友煌, 王军辉,冯怡爽,等. 汽车内覆盖件无油冲压的数值模拟及工艺优化[J]. 塑性工程学报, 2019, 26(5): 42-50.
Su Y H, Wang J H, Feng Y S, et al. Numerical simulation and process optimization of dry stamping for automotive interior cover parts[J]. Journal of Plasticity Engineering, 2019, 26(5): 42-50.
[38]张波, 徐志丹,黄红端,等. 高强钢冲压过程凹模圆角摩擦功数值分析[J]. 模具工业, 2019, 45(8): 6-9.
Zhang B, Xu Z D, Huang H D, et al. Numerical analysis on friction work of concave die fillet during stamping high strength steel[J]. Die & Mould Industry, 2019, 45(8): 6-9.
[39]Hu Y, Wang L, Politis D J, et al. Development of an interactive friction model for the prediction of lubricant breakdown behaviour during sliding wear[J]. Tribology International, 2016, 110: 370-377.
[40]Pelcastre L. High Temperature Galling: Influencing Parameters and Mechanisms[D]. Sweden:Lulea University of Technology, 2013.
[41]Deng L, Mozgovoy S, Hardell J, et al. Numerical study of contact conditions in press hardening for tool wear simulation[J]. International Journal of Material Forming, 2017, 10(5): 717-727.
[42]Deng L, Pelcastre L, Hardell J, et al. Numerical investigation of galling in a press hardening experiment with AlSi-coated workpieces[J]. Engineering Failure Analysis, 2019, 99: 85-96.
[43]温诗铸, 黄平,田煜,等. 摩擦学原理 [M]. 第5版. 北京:清华大学出版社, 2018.
Wen S Z, Huang P, Tian Y, et al. Principles of Tribology[M], The Fifth Edition. Beijing: Tsinghua University Press, 2018.
[44]Beek A V. Advanced Engineering Design: Lifetime Performance and Reliability[M]. Netherlands:TU Delft, 2006.
[45]Enblom R, Berg M. Proposed procedure and trial simulation of rail profile evolution due to uniform wear[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2008, 222(1): 15-25.
[46]Lee R, Jou J L. Application of numerical simulation for wear analysis of warm forging die[J]. Journal of Materials Processing Technology, 2003, 140: 43-48.
[47]Greenwood J A, Williamson J B P P. Contact of nominally flat surfaces[J]. Proceedings of the Royal Society of London,1966, 295(1442): 300-319.
[48]吴涛, 吴兵,温泽峰,等. 基于不同微观固体接触模型的轮轨表面变形特性分析[J]. 机械工程学报, 2017, 53(22): 134-142.
Wu T, Wu B, Wen Z F, et al. Analysis of the wheel/rail surfaces deformation characteristics based on different micro-contact models[J]. Journal of Mechanical Engineering, 2017, 53(22):134-142.
[49]Chang W, Etsion I, Bogy D. An elastic-plastic model for the contact of rough surfaces[J]. Journal of Tribology-Transactions of the ASME, 1987, 109(2): 257-263.
[50]Zhao Y, Maietta D M, Chang L. An asperity microcontact model incorporating the transition from elastic deformation to fully plastic flow[J]. Journal of Tribology,1999, 122(1): 86-93.
[51]Westeneng J. Modelling of Contact and Friction in Deep Drawing Processes[D]. Enschede:University of Twente, 2001.
[52]Hol J, Meinders V T, de Rooij M B, et al. Multi-scale friction modeling for sheet metal forming: The boundary lubrication regime[J]. Tribology International,2015, 81: 112-128.
[53]Hol J, Meinders V T, Geijselaers H J M, et al. Multi-scale friction modeling for sheet metal forming: The mixed lubrication regime[J]. Tribology International, 2015, 85: 10-25.
[54]Venema J, Hazrati J, Matthews D, et al. A multi-scale friction model for hot stamping[A]. Proceeding of 7th International Conference on Hot Sheet Metal Forming of High-Performance Steel CHS2[C]. Auerbach: Verlag Wissenschaftliche Scripten,2019.
[55]Sigvant M, Pilthammar J, Hol J, et al. Friction in sheet metal forming: Influence of surface roughness and strain rate on sheet metal forming simulation results[J]. Procedia Manufacturing, 2019, 29: 512-519.
|