网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
汽车用金属板料热成形过程中摩擦行为研究进展
英文标题:Research progress on friction behavior during thermoforming for automotive sheet metal
作者:邓亮 
单位:上海应用技术大学 机械工程学院 
关键词:热成形 摩擦 模具磨损 有限元模型 摩擦试验 
分类号:TG305
出版年,卷(期):页码:2022,47(4):14-20
摘要:

 以硼钢和铝合金板料为工件的热成形工艺在以实现汽车轻量化和提高碰撞安全性为需求的汽车制造领域的应用广泛。然而,在热成形过程中的高温、高压强的工况下,金属板料与模具之间的摩擦磨损导致板料拉毛、模具磨损和成形偏差,进而影响生产效率。近年来的国内外研究表明,在热成形生产周期内,摩擦行为受到接触界面内涂层、表面形貌和润滑效果下降等因素的综合影响。为了力求更加准确地预测摩擦行为,面向工业应用的摩擦磨损的模拟仿真正从基于接触条件的宏观层面向考虑表面情况的介观层面推进。通过回顾近些年来热成形工艺过程中的摩擦学研究,为厘清研究方向、开展下一步研究提供借鉴。

 The thermoforming process using boron steel and aluminum alloy sheet metals as workpieces has been widely used in automotive manufacturing field to realize lightweight and improve crash safety. However, under the conditions of high temperature and high pressure in the thermoforming process, the friction and wear between sheet metal and die lead to sheet metal flaring, die wear and forming deviation, which in turn affects the production efficiency. In recent years, the domestic and foreign studies show that during the production cycle of thermoforming, the friction behavior is comprehensively affected by the factors such as inner coating of contact interface, surface morphology and decline of lubrication effect. In order to predict the friction behavior more accurately, the simulation of friction and wear for industrial applications is moving from the macroscopic level based on contact conditions to the mesoscopic level considering surface conditions. Therefore, the tribological research in the themoforming process in recent years is reviewed to provide support for clarifying research direction and carrying out further research.

基金项目:
国家自然科学基金青年科学基金资助项目(52005339);上海应用技术大学引进人才科研启动项目资助(YJ2020-8)
作者简介:
作者简介:邓亮(1986-),男,博士,讲师 E-mail:liangdeng@sit.edu.cn
参考文献:

 [1]Billur E, Berglund G, Gustafsson T. History and Future Outlook of Hot Stamping[M]. Switzerland: Springer International Publishing, 2019.


[2]Berglund G. The history of hardening of boron steel in northern Sweden[A]. The 1st International Conference on Hot Sheet Metal Forming of High-Performance Steel [C]. Sweden,2008.

[3]Mori K. Hot stamping of ultra-high strength steel parts[J]. Journal of the Japan Society for Technology of Plasticity,2017, 58(673): 125-129.

[4]Karbasian H, Tekkaya A E. A review on hot stamping[J]. Journal of Materials Processing Technology,2010, 210(15): 2103-2118.

[5]Mori K, Bariani P F, Behrens B A, et al. Hot stamping of ultra-high strength steel parts[J]. CIRP Annals,2017, 66(2): 755-777.

[6]Suehiro M, Maki J, Kusumi K, et al. Properties of aluminized steels for hot-forming[A]. International Body Engineering Conference & Exposition[C]. USA, 2003.

[7]Bariani P F, Bruschi S, Ghiotti A, et al. Hot stamping of AA5083 aluminium alloy sheets[J]. CIRP Annals, 2013, 62(1): 251-254.

[8]Miller W S, Zhuang L, Bottema J, et al. Recent development in aluminium alloys for the automotive industry[J]. Materials Science & Engineering A,2000, 280(1): 37-49.

[9]董学锋. 车身材料与车身轻量化[J]. 汽车工艺与材料,2017, (7): 1-18.

Dong X F. Body material and body lightweight [J]. Automobile Technology & Material, 2017,(7):1-18.

[10]王帅, 孙洋. 新能源汽车轻量化技术路线和应用策略[J]. 汽车实用技术,2019,(10): 38-40, 57.

Wang S, Sun Y. New energy vehicle lightweight technology route and application strategy [J]. Automobile Applied Technology, 2019,(10):38-40, 57.

[11]Garrett R P, Lin J, Dean T A. Solution heat treatment and cold die quenching in forming AA 6xxx sheet components: Feasibility study[J]. Advanced Materials Research, 2005, 6-8: 673-680.

[12]Harrison N R, Luckey S G. Hot stamping of a b-pillar outer from high strength aluminum sheet AA7075[J]. SAE International Journal of Materials and Manufacturing,2014, 7(3): 567-573.

[13]Vergne C, Boher C, Gras R, et al. Influence of oxides on friction in hot rolling: Experimental investigations and tribological modelling[J]. Wear, 2006, 260(9-10): 957-975.

[14]Mozgovoy S, Hardell J, Deng L, et al. Tribological behavior of tool steel under press hardening conditions using simulative tests[J]. Journal of Tribology,2017, 140: 1-14.

[15]Hernandez S, Hardell J, Courbon C, et al. High temperature friction and wear mechanism map for tool steel and boron steel tribopair[J]. Tribology-Materials, Surfaces & Interfaces, 2014, 8(2): 74-84.

[16]Mozgovoy S, Hardell J, Prakash B. High temperature friction and wear performance of PVD coatings under press hardening contact conditions[J]. Advances in Tribology, 2019, (1): 1-15.

[17]Hardell J, Prakash B. High-temperature friction and wear behaviour of different tool steels during sliding against Al-Si-coated high-strength steel[J]. Tribology International, 2008, 41(7): 663-671.

[18]Yanagida A, Azushima A. Evaluation of coefficients of friction in hot stamping by hot flat drawing test[J]. CIRP Annals-Manufacturing Technology, 2009, 58(1): 247-250.

[19]王伟, 孔俊超,顾伟,等. 温成形摩擦界面粉末润滑层宏微观特性的试验研究[J]. 摩擦学学报, 2016, 36(2): 233-239.

Wang W, Kong J C, Gu W, et al. Experimental study on macro and micro characteristics of powder lubricant layer in frictional warm interface[J]. Tribology, 2016, 36(2):233-239.

[20]张伟, 张毅,昌晶晶. B1500HS硼钢800 ℃冲压界面粉末润滑特性研究[J]. 制造技术与机床, 2019,(9): 106-110.

Zhang W, Zhang Y, Chang J J. Investigation about power lubrication characteristics on the interface during 800 ℃ stamping of steel B1500HS[J]. Test and Quality, 2019,(9):106-110.

[21]Ghiotti A, Bruschi S, Medea F. Wear onset in hot stamping of aluminium alloys sheets[J]. Wear, 2017, 376-377: 484-495.

[22]Dessain C, Hein P, Wilsius J E L, et al. Experimental investigation of friction and wear in hot stamping of Usibor 1500P[A]. Proceedings of the 1st International Conference on Hot Sheet Metal Forming of High-Performance Steel[C]. Kassel, 2008.

[23]Decrozant-Triquenaux J, Pelcastre L, Courbon C, et al. Tribological behaviour of PVD coated tool steels in hot forming of aluminium alloys[A]. Proceedings of the 7th International Conference on Hot Sheet Metal Forming of High-Performance Steel[C]. Lulea, 2019.

[24]Decrozant-Triquenaux J, Pelcastre L, Courbon C, et al. Effect of surface engineered tool steel and lubrication on aluminium transfer at high temperature[J]. Wear,2021,477: 203879.

[25]Mozgovoy S, Hardell J, Deng L, et al. Effect of temperature on friction and wear of prehardened tool steel during sliding against 22MnB5 steel[J]. Tribology-Materials, Surfaces & Interfaces,2014, 8(2): 65-73.

[26]白植雄, 左鹏鹏,计杰,等. 两种热作模具钢的高温摩擦磨损性能[J]. 工程科学学报,2019, 41(7): 906-913.

Bai Z X, Zuo P P, Ji J, et al. High temperature friction and wear properties of two hot work die steels[J]. Chinese Journal of Engineering, 2019, 41(7): 906-913.

[27]王义林, 刘勇,耿会程,等. 高强铝合金热冲压成形技术研究进展[J]. 航空制造技术, 2019,(16): 22-35.

Wang Y L, Liu Y, Geng H C, et al. Research progress of hot stamping technology for high strength aluminum alloys[J]. Aeronautical Manufacturing Technology, 2019, (16): 22-25.

[28]江福椿, 高凯翔,王武荣. 用于模拟热冲压成形过程的数显式高温摩擦磨损试验机的研制[J]. 上海金属, 2019, 14(2): 99-104.

Jiang F C, Gao K X, Wang W R. Development of a digital high-temperature friction and wear tester for simulating hot-stamping process[J]. Shanghai Metals, 2019, 14(2): 99-104.

[29]高凯翔, 王武荣,韦习成,等. 22MnB5硼钢裸板热成形中的高温摩擦[J]. 上海交通大学学报, 2019, 53(9): 1136-1142.

Gao K X, Wang W R, Wei X C, et al. High-temperature friction of uncoated 22MnB5 boron steel in hot stamping[J], Journal of Shanghai Jiao Tong University, 2019, 53(9): 1136-1142.

[30]Tian X W, Zhang Y S, Wang Z, et al. Design of a tribo-simulator for the high strength steel friction and wear investigation in hot stamping[J]. Advanced Materials Research,2011, 421: 147-150.

[31]Yanagida A, Kurihara T, Azushima A. Development of tribo-simulator for hot stamping[J]. Journal of Materials Processing Technology, 2010, 210(3): 456-460.

[32]Deng L, Mozgovoy S, Hardell J, et al. Development of a tribological test programme based on press hardening simulations[J]. Tribology Letters,2017, 65(2): 43-54.

[33]Heide E V D, Schipper D J. Galling initiation due to frictional heating[J]. Wear, 2003, 254(11): 1127-1133.

[34]Patrik Karlsson, Pavel Krakhmalev, Anders Grd, et al. Influence of work material proof stress and tool steel microstructure on galling initiation and critical contact pressure[J]. Tribology International,2013, 60: 104-110.

[35]蒋斌, 吴晓春. 热冲模零件摩擦磨损行为研究[J]. 模具工业, 2019, 45(12): 1-6.

Jiang B, Wu X C. Research on friction and wear behavior of hot stamping die part[J]. Die & Mould Industry, 2019, 45(12): 1-6.

[36]聂昕, 肖兵兵,申丹凤,等. 考虑变形热和摩擦热效应的热力耦合冲压研究[J]. 中国机械工程, 2020, 31(16): 2005-2015.

Nie X, Xiao B B, Shen F D, et al. Research on thermal-mechanical stamping forming considering deformation heat and friction heat effects[J]. China Mechanical Engineering, 2020, 31(16): 2005-2015.

[37]苏友煌, 王军辉,冯怡爽,等. 汽车内覆盖件无油冲压的数值模拟及工艺优化[J]. 塑性工程学报, 2019, 26(5): 42-50.

Su Y H, Wang J H, Feng Y S, et al. Numerical simulation and process optimization of dry stamping for automotive interior cover parts[J]. Journal of Plasticity Engineering, 2019, 26(5): 42-50.

[38]张波, 徐志丹,黄红端,等. 高强钢冲压过程凹模圆角摩擦功数值分析[J]. 模具工业, 2019, 45(8): 6-9.

Zhang B, Xu Z D, Huang H D, et al. Numerical analysis on friction work of concave die fillet during stamping high strength steel[J]. Die & Mould Industry, 2019, 45(8): 6-9.

[39]Hu Y, Wang L, Politis D J, et al. Development of an interactive friction model for the prediction of lubricant breakdown behaviour during sliding wear[J]. Tribology International, 2016, 110: 370-377.

[40]Pelcastre L. High Temperature Galling: Influencing Parameters and Mechanisms[D]. Sweden:Lulea University of Technology, 2013.

[41]Deng L, Mozgovoy S, Hardell J, et al. Numerical study of contact conditions in press hardening for tool wear simulation[J]. International Journal of Material Forming, 2017, 10(5): 717-727.

[42]Deng L, Pelcastre L, Hardell J, et al. Numerical investigation of galling in a press hardening experiment with AlSi-coated workpieces[J]. Engineering Failure Analysis, 2019, 99: 85-96.

[43]温诗铸, 黄平,田煜,等. 摩擦学原理 [M]. 第5版. 北京:清华大学出版社, 2018.

Wen S Z, Huang P, Tian Y, et al. Principles of Tribology[M], The Fifth Edition. Beijing: Tsinghua University Press, 2018.

[44]Beek A V. Advanced Engineering Design: Lifetime Performance and Reliability[M]. Netherlands:TU Delft, 2006.

[45]Enblom R, Berg M. Proposed procedure and trial simulation of rail profile evolution due to uniform wear[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2008, 222(1): 15-25.

[46]Lee R, Jou J L. Application of numerical simulation for wear analysis of warm forging die[J]. Journal of Materials Processing Technology, 2003, 140: 43-48.

[47]Greenwood J A, Williamson J B P P. Contact of nominally flat surfaces[J]. Proceedings of the Royal Society of London,1966, 295(1442): 300-319.

[48]吴涛, 吴兵,温泽峰,等. 基于不同微观固体接触模型的轮轨表面变形特性分析[J]. 机械工程学报, 2017, 53(22): 134-142.

Wu T, Wu B, Wen Z F, et al. Analysis of the wheel/rail surfaces deformation characteristics based on different micro-contact models[J]. Journal of Mechanical Engineering, 2017, 53(22):134-142.

[49]Chang W, Etsion I, Bogy D. An elastic-plastic model for the contact of rough surfaces[J]. Journal of Tribology-Transactions of the ASME, 1987, 109(2): 257-263.

[50]Zhao Y, Maietta D M, Chang L. An asperity microcontact model incorporating the transition from elastic deformation to fully plastic flow[J]. Journal of Tribology,1999, 122(1): 86-93.

[51]Westeneng J. Modelling of Contact and Friction in Deep Drawing Processes[D]. Enschede:University of Twente, 2001.

[52]Hol J, Meinders V T, de Rooij M B, et al. Multi-scale friction modeling for sheet metal forming: The boundary lubrication regime[J]. Tribology International,2015, 81: 112-128.

[53]Hol J, Meinders V T, Geijselaers H J M, et al. Multi-scale friction modeling for sheet metal forming: The mixed lubrication regime[J]. Tribology International, 2015, 85: 10-25.

[54]Venema J, Hazrati J, Matthews D, et al. A multi-scale friction model for hot stamping[A]. Proceeding of 7th International Conference on Hot Sheet Metal Forming of High-Performance Steel CHS2[C]. Auerbach: Verlag Wissenschaftliche Scripten,2019.

[55]Sigvant M, Pilthammar J, Hol J, et al. Friction in sheet metal forming: Influence of surface roughness and strain rate on sheet metal forming simulation results[J]. Procedia Manufacturing, 2019, 29: 512-519.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9