[1]朱永波, 张飞, 张勇军, 等. 基于粒子群优化的带钢凸度神经网络预测模型研究[J].冶金自动化, 2019, 43(2):11-15,28.
Zhu Y B, Zhang F, Zhang Y J, et al. Prediction model of strip crown based on particle swarm optimization neural network [J]. Metallurgical Automation, 2019, 43(2):11-15,28.
[2]王付杰, 毛飞龙, 双远华, 等. 管材斜连轧过程的运动学分析及实验研究[J]. 锻压技术, 2021, 46(4): 215-222.
Wang F J, Mao F L, Shuang Y H, et al. Kinematics analysis and experimental study of pipe tanque rolling process [J]. Forging & Stamping Technology, 2021, 46(4): 215-222.
[3]孙孟乾, 孙建亮, 韩辉, 等. 大型铝合金筒节轧制过程圆度控制及影响因素分析[J]. 燕山大学学报, 2021, 45(2): 108-115.
Sun M G, Sun J L, Han H, et al.Roundness control and analysis of influencing factors in rolling process of large aluminum alloy barrel [J]. Journal of Yanshan University, 2021, 45(2): 108-115.
[4]李飞飞, 宋勇, 刘超, 等. 热轧带钢力学性能预报模型的误差分布建模研究[J].冶金自动化, 2019, 43(6):28-33.
Li F F, Song Y, Liu C, et al. Error distribution modeling of prediction model for mechanical properties of hot rolled strip [J]. Metallurgical Automation, 2019, 43(6):28-33.
[5]阎昱, 李嘉欣. 不同加载路径下的AZ31B镁合金的成形极限[J]. 锻压技术, 2021, 46(2): 40-46.
Yan Y, Li J X. Forming limit of AZ31B magnesium alloy under different loading paths [J]. Forging & Stamping Technology, 2021, 46(2): 40-46.
[6]乔及森, 王兵. 深冷轧制制备超细晶纯铝的微观组织与热稳定性研究[J]. 塑性工程学报, 2021, 28(2): 102-108.
Qiao J S, Wang B. Microstructure and thermal stability of ultrafine crystalline pure aluminum prepared by deep cold rolling [J]. Journal of Plasticity Engineering, 2021, 28(2): 102-108.
[7]Mahmoodkhani Y,Wells M A,Song G.Prediction of roll force in skin pass rolling using numerical and artificial neural network methods [J].Ironmaking & Steelmaking,2016,44 (4): 281-286.
[8]魏立新,张宇,孙浩,等.基于改进OS-ELM的冷连轧在线轧制力预测[J].计量学报,2019,40(1): 111-116.
Wei L X,Zhang Y,Sun H,et al.On-line rolling force prediction of cold continuous rolling based on improved OS-ELM[J].Acta Metrology Sinica,2019,40(1): 111-116.
[9]赵文姣,闫洪伟,杨枕,等.基于CA-CAMC网络的轧制力自学习预测算法[J].冶金自动化,2016,40(2): 7-10.
Zhao W J, Yan H W, Yang Z, et al. Rolling force self-learning prediction algorithm based on CA-CAMC network [J]. Metallurgical Automation, 2016, 40(2): 7-10.
[10]Yao L,Ge Z Q.Deep learning of semi-supervised process data with hierarchical extreme learning machine and soft sensor application [J].IEEE Transactions on Industrial Electronics,2017,25(6): 1490-1498.
[11]曹建国, 江军, 赵秋芳, 等. 基于数据挖掘的宽厚板板凸度控制[J].中南大学学报:自然科学版, 2019, 50(11):2743-2752.
Cao J G, Jiang J, Zhao Q F, et al. Control of plate crown for wide and thick plates based on data mining [J]. Journal of Central South University: Science and Technology, 2019, 50(11):2743-2752.
[12]王强,吕政,王霖青,等.基于深度去噪核映射的长期预测算法[J].控制与决策,2019,34(5): 989-996.
Wang Q, Lyu Z, Wang L Q, et al. Long term prediction algorithm based on deep denoising kernel mapping [J].Control and Decision, 2019, 34(5): 989-996.
[13]Bengio Y,Lamblin P,Popvici D,et al.Greedy layer-wise training of deep networks [J].Advances in Neural Information Processing Systems,2007,19: 153-160.
[14]魏立新,魏新宇,孙浩,等.基于深度网络训练的铝热轧轧制力预测[J].中国有色金属学报,2018,28(10): 2070-2076.
Wei L X, Wei X Y, Sun H, et al. Rolling force prediction of aluminum hot rolling based on deep network training [J]. Chinese Journal of Nonferrous Metals, 2018, 28(10): 2070-2076.
[15]马湧, 王晓鹏, 马莎莎.基于Keras深度学习框架下BP神经网络的热轧带钢力学性能预测[J].冶金自动化, 2019, 43(2):6-10.
Ma Y, Wang X P, Ma S S. Prediction of mechanical properties of hot rolled strip based on BP neural network based on Keras deep learning framework [J]. Metallurgical Automation, 2019, 43(2):6-10.
[16]陈丹, 邵健, 殷实, 等. 基于大数据平台的冷连轧轧制力自学习模型优化[J].冶金自动化, 2020, 44(6):25-29, 61.
Chen D, Shao J, Yin S, et al. Optimization of rolling force self-learning model for cold tandem rolling based on big data platform [J]. Metallurgical Automation, 2020, 44(6): 25-29, 61.
[17]曹建国, 江军, 邱澜, 等. 新一代高技术宽带钢冷轧机全机组一体化板形控制[J].中南大学学报:自然科学版, 2019, 50(7):1584-1591.
Cao J G, Jiang J, Qiu L, et al. Integrated shape control of new generation high technology wide strip cold rolling mill [J]. Journal of Central South University: Science and Technology, 2019, 50(7):1584-1591.
|