网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
热成形模具冷却系统流量分配均匀性研究
英文标题:Research on flow distribution uniformity in cooling system of thermoforming die
作者:吉日格勒 孙福臻 张泉达 刘子知 
单位:中国机械科学研究总院集团有限公司 先进成形技术与装备国家重点实验室 
关键词:热成形模具 冷却系统 并联管路 流场状态检测平台 管路长度 进口流量 
分类号:TG76
出版年,卷(期):页码:2022,47(4):218-226
摘要:

 针对热成形模具复杂并联管路冷却系统的流量分配均匀性问题,通过建立某车型前防撞梁热成形模具冷却系统模型,利用STAR-CCM+软件对冷却系统的流量分配进行数值仿真分析,研究管路长度和进口流量对冷却系统管路流量分配的影响,并利用模具冷却系统流场状态检测平台进行验证。结果表明,流场分布的模拟结果和试验结果一致。管路长度和进口流量对管路流量分配的影响较大:管路长度差异越大,冷却系统流量分配均匀性越差;随着进口流量的增大,流场流量分配均匀性变差。相较于模拟仿真结果,检测平台可以更好地反映流场的分布。此外,通过检测平台可以测得冷却系统的最大进口流量,前防撞梁模具冷却系统进口流量的最大值约为19 m3·h-1。

 For the problem of flow distribution uniformity for complex parallel pipeline cooling system in the thermoforming die, the cooling system model in the thermoforming die of front anti-collision beam for a certain car was established, and the numerical simulation analysis on the flow distribution of the cooling system was conducted by software STAR-CCM+. Then, the influences of pipe length and inlet flow on the flow distribution in the cooling system were studied, which was verified by the flow field state detection platform of die cooling system. The results show that the results of the simulation in the flow distribution were consistent with the experimental results. The pipe flow distribution is greatly affected by pipe length and inlet flow. The greater the difference in the pipe length is, the worse the uniformity of flow distribution in the cooling system is. As the inlet flow increases, the flow distribution uniformity of flow field becomes worse. Compared with the simulation results, the detection platform reflects the distribution of the flow field better. In addition, the maximum inlet flow of the cooling system can be measured by the detection platform, and the maximum inlet flow value of the cooling system in the die of front anti-collision beam is about 19 m3·h-1.

基金项目:
山东省重点研发计划(重大科技创新工程)项目(2019JZZY010442)
作者简介:
作者简介:吉日格勒(1991-),男,硕士,助理工程师 E-mail:jirigele678@hotmail.com 通信作者:张泉达(1986-),男,博士,中级工程师 E-mail:zhangquandadgu@163.com
参考文献:

 [1]杨秀臣. 热冲压成形模具冷却系统的研究[D]. 长春: 吉林大学, 2015.


Yang X C. Research on Cooling System of Hot Forming Tools[D]. Changchun: Jilin University, 2015.

[2]庞立娟, 张雪峰, 黄治勇. 热冲压成形模具冷却系统的设计研究[J]. 粉末冶金工业, 2018, 28(4): 71-76.

Pang L J, Zhang X F, Huang Z Y. Research and design on cooling system of hot stamping die[J]. Powder Metallurgy Industry, 2018, 28(4): 71-76.

[3]Lim W S, Choi H S, Ahn S Y, et al. Cooling channel design of hot stamping tools for uniform high-strength components in hot stamping process[J]. The International Journal of Advanced Manufacturing Technology, 2014, 70(5-8): 1189-1203.

[4]刘波, 吴竞. 并联管路流量分配的数值仿真研究[J]. 雷达与对抗, 2018, 38(4):38-41.

Liu B, Wu J. Numerical simulation of flow distribution of parallel pipeline system[J]. Radar & ECM, 2018, 38(4):38-41.

[5]赵久志. 动力锂电池并联管路液冷系统设计及试验研究[J]. 时代汽车, 2019, (9): 72-74.

Zhao J Z. Design and experimental study of parallel pipeline hydraulic cooling system for power lithium battery[J]. Auto Time, 2019, (9): 72-74.

[6]陈学永, 蔡艳召, 黄胜利, 等. 基于仿真的多分支液冷管路网络流量分配研究[J]. 电子机械工程, 2019, 35(5): 45-49.

Chen X Y, Cai Y Z, Huang S L, et al. Research on flow distribution of multi-branch liquid cooling pipeline network based on simulation[J]. Electro-Mechanical Engineering, 2019, 35(5): 45-49.

[7]万智华, 王国平, 陈宏振, 等. 支路阻抗可调并联管路流量均布实验研究[J]. 实验科学与技术, 2015, 13(3): 3-9.

Wan Z H, Wang G P, Chen H Z, et al. Parallel pipelines with a variable branch impedance flow distribution test system[J]. Experiment Science and Technology, 2015, 13(3): 3-9.

[8]黄冬云, 韩亚冲, 海上平台不同形式并联分支管路的流量分配[J]. 中国造船, 2019, 60(4): 276-282.

Huang D Y, Han Y C. Flow distribution between parallel branch pipelines on offshore platform[J]. Shipbuilding of China, 2019, 60(4): 276-282.

[9]陈俊, 彭成允, 蔡丽娟, 等. 基于Abaqus的冷却系统结构参数对模具冷却性能的影响研究[J]. 热加工工艺, 2018, 45(15): 151-155.

Chen J, Peng C Y, Cai L J, et al. Influence of cooling system structure parameters on die cooling performance based on Abaqus[J]. Hot Working Technology, 2018, 45(15): 151-155.

[10]Hung T H, Wang S W, Chiuhuang C K, et al. Performance of die cooling system design in hot stamping process[J]. Journal of the Chinese Institute of Engineers, 2019, 42(6): 1-9.

[11]刘雪飞, 李磊, 石娟昌, 等. 基于性能梯度分布的B柱加强件热冲压模具冷却系统研究[J]. 热加工工艺, 2020, 49(21): 89-98.

Liu X F, Li L, Shi J C, et al. Research on cooling system of hot stamping die for B-pillar reinforcement part based on performance gradient distribution[J]. Hot Working Technology, 2020, 49(21): 89-98.

[12]Muvunzi R, Hagedorn-Hansen D, Matope S, et al. Industry case study: Process chain for manufacturing of a large hybrid hot stamping tool with conformal cooling channels[J]. International Journal of Advanced Manufacturing Technology, 2020, 110: 1723-1730.

[13]Ying L, Gao T, Dai M, et al. Investigation of convectional heat transfer coefficient of circular cross-section short pipes in hot stamping dies[J]. Applied Thermal Engineering, 2018, 138: 133-153.

[14]Zhao X, Zhou M D, Liu Y C, et al. Topology optimization of channel cooling structures considering thermo-mechanical behavior[J]. Structural and Multidisciplinary Optimization, 2018, 59(2): 613-632.

[15]谢建平, 黄延平. 模具螺旋式冷却系统热效率的理论分析[J].锻压技术,2020,45(7):203-210.

Xie J P,Huang Y P. Theoretical analysis of thermal efficiency for mould spiral cooling system[J]. Forging & Stamping Technology,2020,45(7):203-210.

[16]刘佳宁. 分集水器阻力特性的实验研究[D]. 邯郸:河北工程大学, 2016.

Liu J N. Experimental Study on the Resistance Characteristic of Manifold[D]. Handan: Hebei University of Engineering, 2016.

[17]陆泳升. 车辆冷却系统冷侧阻力模拟试验台研制及应用[D]. 杭州:浙江大学, 2017.

Lu Y S. Development and Application of Resistance Simulation Test Bench for Vehicle′s Cooling System′s Cold Side[D]. Hangzhou: Zhejiang University, 2017.

[18]刘方, 吴鹏飞. 船舶淡水冷却系统流量分配的探析[J]. 船海工程, 2012, 41(5): 87-90.

Liu F, Wu P F. Application of the model of water environment′s carrying capacity in prediction of ship′s development scale[J]. Ship & Ocean Engineering, 2012, 41(5): 87-90.
服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9