[1]杨秀臣. 热冲压成形模具冷却系统的研究[D]. 长春: 吉林大学, 2015.
Yang X C. Research on Cooling System of Hot Forming Tools[D]. Changchun: Jilin University, 2015.
[2]庞立娟, 张雪峰, 黄治勇. 热冲压成形模具冷却系统的设计研究[J]. 粉末冶金工业, 2018, 28(4): 71-76.
Pang L J, Zhang X F, Huang Z Y. Research and design on cooling system of hot stamping die[J]. Powder Metallurgy Industry, 2018, 28(4): 71-76.
[3]Lim W S, Choi H S, Ahn S Y, et al. Cooling channel design of hot stamping tools for uniform high-strength components in hot stamping process[J]. The International Journal of Advanced Manufacturing Technology, 2014, 70(5-8): 1189-1203.
[4]刘波, 吴竞. 并联管路流量分配的数值仿真研究[J]. 雷达与对抗, 2018, 38(4):38-41.
Liu B, Wu J. Numerical simulation of flow distribution of parallel pipeline system[J]. Radar & ECM, 2018, 38(4):38-41.
[5]赵久志. 动力锂电池并联管路液冷系统设计及试验研究[J]. 时代汽车, 2019, (9): 72-74.
Zhao J Z. Design and experimental study of parallel pipeline hydraulic cooling system for power lithium battery[J]. Auto Time, 2019, (9): 72-74.
[6]陈学永, 蔡艳召, 黄胜利, 等. 基于仿真的多分支液冷管路网络流量分配研究[J]. 电子机械工程, 2019, 35(5): 45-49.
Chen X Y, Cai Y Z, Huang S L, et al. Research on flow distribution of multi-branch liquid cooling pipeline network based on simulation[J]. Electro-Mechanical Engineering, 2019, 35(5): 45-49.
[7]万智华, 王国平, 陈宏振, 等. 支路阻抗可调并联管路流量均布实验研究[J]. 实验科学与技术, 2015, 13(3): 3-9.
Wan Z H, Wang G P, Chen H Z, et al. Parallel pipelines with a variable branch impedance flow distribution test system[J]. Experiment Science and Technology, 2015, 13(3): 3-9.
[8]黄冬云, 韩亚冲, 海上平台不同形式并联分支管路的流量分配[J]. 中国造船, 2019, 60(4): 276-282.
Huang D Y, Han Y C. Flow distribution between parallel branch pipelines on offshore platform[J]. Shipbuilding of China, 2019, 60(4): 276-282.
[9]陈俊, 彭成允, 蔡丽娟, 等. 基于Abaqus的冷却系统结构参数对模具冷却性能的影响研究[J]. 热加工工艺, 2018, 45(15): 151-155.
Chen J, Peng C Y, Cai L J, et al. Influence of cooling system structure parameters on die cooling performance based on Abaqus[J]. Hot Working Technology, 2018, 45(15): 151-155.
[10]Hung T H, Wang S W, Chiuhuang C K, et al. Performance of die cooling system design in hot stamping process[J]. Journal of the Chinese Institute of Engineers, 2019, 42(6): 1-9.
[11]刘雪飞, 李磊, 石娟昌, 等. 基于性能梯度分布的B柱加强件热冲压模具冷却系统研究[J]. 热加工工艺, 2020, 49(21): 89-98.
Liu X F, Li L, Shi J C, et al. Research on cooling system of hot stamping die for B-pillar reinforcement part based on performance gradient distribution[J]. Hot Working Technology, 2020, 49(21): 89-98.
[12]Muvunzi R, Hagedorn-Hansen D, Matope S, et al. Industry case study: Process chain for manufacturing of a large hybrid hot stamping tool with conformal cooling channels[J]. International Journal of Advanced Manufacturing Technology, 2020, 110: 1723-1730.
[13]Ying L, Gao T, Dai M, et al. Investigation of convectional heat transfer coefficient of circular cross-section short pipes in hot stamping dies[J]. Applied Thermal Engineering, 2018, 138: 133-153.
[14]Zhao X, Zhou M D, Liu Y C, et al. Topology optimization of channel cooling structures considering thermo-mechanical behavior[J]. Structural and Multidisciplinary Optimization, 2018, 59(2): 613-632.
[15]谢建平, 黄延平. 模具螺旋式冷却系统热效率的理论分析[J].锻压技术,2020,45(7):203-210.
Xie J P,Huang Y P. Theoretical analysis of thermal efficiency for mould spiral cooling system[J]. Forging & Stamping Technology,2020,45(7):203-210.
[16]刘佳宁. 分集水器阻力特性的实验研究[D]. 邯郸:河北工程大学, 2016.
Liu J N. Experimental Study on the Resistance Characteristic of Manifold[D]. Handan: Hebei University of Engineering, 2016.
[17]陆泳升. 车辆冷却系统冷侧阻力模拟试验台研制及应用[D]. 杭州:浙江大学, 2017.
Lu Y S. Development and Application of Resistance Simulation Test Bench for Vehicle′s Cooling System′s Cold Side[D]. Hangzhou: Zhejiang University, 2017.
[18]刘方, 吴鹏飞. 船舶淡水冷却系统流量分配的探析[J]. 船海工程, 2012, 41(5): 87-90.
Liu F, Wu P F. Application of the model of water environment′s carrying capacity in prediction of ship′s development scale[J]. Ship & Ocean Engineering, 2012, 41(5): 87-90.
|