网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
T6热处理对6061铝合金大型锥筒形件的力学性能及组织的影响
英文标题:Influence of T6 heat treatment on mechanical properties and microstructure for 6061 aluminum alloy large cone-cylinder part
作者:白雪智 李国俊 李碧聪 李旭斌 张治民 
单位:中北大学 材料科学与工程学院 
关键词:6061铝合金 T6热处理 力学性能 固溶处理 人工时效 
分类号:TG312
出版年,卷(期):页码:2022,47(4):227-234
摘要:

 研究了T6热处理对成形后6061铝合金构件组织和力学性能的影响。在经过不同的T6热处理后,通过电子拉伸实验研究构件力学性能的变化规律,利用光学显微镜、扫描电子显微镜和X射线衍射仪对热处理温度和时间对组织结构的影响进行分析。结果表明,固溶处理的合金中存在β-Al5FeSi和Mg2Si相。固溶处理温度和时间对合金的拉伸性能及塑性有显著影响。随着固溶温度及时间的增加,在560 ℃固溶4 h时抗拉强度及塑性最好,分别为211.62 MPa和和38.3%;相对于人工时效保温时间,人工时效温度对合金的拉伸性能及塑性的影响更大,在170 ℃人工时效10 h时力学性能最好,屈服强度和抗拉强度分别为145.26和363.30 MPa,伸长率为18.32%。

 The influence of T6 heat treatment on the microstructure and mechanical properties of 6061 aluminum alloy components after forming was studied. Then, after different T6 heat treatments, the change laws of mechanical properties for components were studied by electron tensile test, and the influences of heat treatment temperature and time on the microstructure were analyzed by optical microscope, scanning electron microscope and X-ray diffractometer. The results show that there are β-Al5FeSi and Mg2Si phases in the solution-treated alloy, and the solution treatment temperature and time have a significant effect on the tensile properties and plasticity of alloy. With the increasing of the solution temperature and time, the tensile strength and plasticity are the best (211.62 MPa, 38.3%) in the solution treatment(560 ℃, 4 h). However, compared with the artificial aging holding time, the artificial aging temperature has a greater impact on the tensile properties and plasticity of alloy, the mechanical properties are the best under the artificial aging (170 ℃, 10 h), and the yield strength, tensile strength and elongation are 145.26, 363.30 MPa and 18.32%, respectively. 

基金项目:
国家自然科学基金资助项目(51775520)
作者简介:
作者简介:白雪智(1995-),男,硕士研究生 E-mail:baixuezhi0415@163.com 通信作者:李国俊(1969-),男,硕士,教授级高工 E-mail:liguojun@126.com
参考文献:

 [1]刘勇, 耿会程,朱彬,等. 高强铝合金高效热冲压工艺研究进展[J].锻压技术,2020,45(7):1-12.


Liu Y,Geng H C,Zhu B,et al. Research progress on high efficiency hot stamping process for high strength aluminum alloy[J]. Forging & Stamping Technology,2020,45(7):1-12.

[2]Fu M W, Yong M S, Muramatsu T. Die fatigue life design and assessment via CAE simulation[J]. The International Journal of Advanced Manufacturing Technology, 2008, 35(9):843-851.

[3]项瑶, 卢立伟,吴木义,等. 6061铝合金膨胀-连续剪切变形行为[J].材料工程,2020,48(12): 111-118.

Xiang Y, Lu L W, Wu M Y, et al. Expansion continuous shear deformation behavior of 6061 aluminum alloy[J]. Journal of Material Engineering, 2020,48(12): 111-118.

[4]Afifi M A,Wang Y C, Pereira P, et al. Characterization of precipitates in an Al-Zn-Mg alloy processed by ECAP and subsequent annealing[J]. Materials Science and Engineering: A, 2018,712:146-156.

[5]Shen F, Zhou Z, Li W, et al. Micro-mechanism of texture evolution during isochronal annealing of as-annealed hot rolled Al-Cu-Mg sheet[J]. Materials & Design, 2019,165:107575.

[6]丁凤娟, 贾向东,洪腾蛟,等.不同热处理工艺对6061铝合金塑性和硬度的影响[J].材料导报,2021,35(8):8108-8115,8120.

Ding F J, Jia X D, Hong T J, et al. Effects of different heat treatment processes on plasticity and hardness of 6061 aluminum alloy[J]. Materials Review, 2021, 35(8):8108-8115,8120.

[7]冯银成, 李落星,刘杰,等. 自然时效对6061铝合金显微组织和力学性能的影响[J].机械工程材料,2011,35(3):18-21.

Feng Y C, Li L X, Liu J, et al. Effect of natural aging on microstructure and mechanical properties of 6061 aluminum alloy[J].Materials for Mechanical Engineering, 2011,35(3):18-21.

[8]Liu X G, Wang G J, Chen L, et al. Homogenization heat treatment process of as-cast 6061 aluminum alloy[J]. Transactions of Materials and Heat Treatment, 2016,37(7):77-82.

[9]Jin B R, Ha D W, Jeong C Y. Effect of solution treatment on the hardness and tensile properties of Al-Mg-Si alloys for automotive chassis[J]. Materials Transactions, 2019, 60(5): 815-823.

[10]Zhang P, Li Z, Liu B, et al. Tensile properties and deformation behaviors of a new aluminum alloy for high pressure die casting[J]. Journal of Materials Science & Technology, 2017,33(4):367-378.

[11]刘磊, 周海涛,周楠,等. 时效温度和时间对新型Al-6Zn-1.1Mg合金组织性能的影响[J].材料导报,2018,32(12):4292-4296.

Liu L, Zhou H T, Zhou N, et al. Aging duration dependence and agine temperature dependence of microstructure and properties of Al-6Zn-1.1Mg alloy[J].Materials Reports, 2018,32(12):4292-4296.

[12]Frck H, Milkereit B, Wiechmann P, et al. Influence of solution-annealing parameters on the continuous cooling precipitation of aluminum alloy 6082[J]. Metals, 2018, 8(4):265-281.

[13]Xu C C, He H, Yu W Y, et al. Influence of quenching temperature on peak aging time and hardness of Al-Mg-Si-Cu alloys strengthened by nano-sized precipitates[J]. Materials Science and Engineering: A, 2019, 744: 28-35.

[14]Kemsies R H, Milkereit B, Wenner S, et al. In situ DSC investigation into the kinetics and microstructure of dispersoid formation in Al-Mn-Fe-Si(-Mg) alloys[J]. Materials & Design, 2018,146:96-107.

[15]Marioara C D, Andersen S J, Jansen J, et al. Atomic model for GP-zones in a 6082 Al-Mg-Si system[J]. Acta Materialia, 2001, 49: 321-328.

[16]Marioara C D, Andersen S J, Jansen J, et al. The influence of temperature and storage time at RT on nucleation of the β″ phase in a 6082 Al-Mg-Si alloy[J]. Acta Materialia, 2003,51(3):789-796.

[17]Dadbakhsh S, KarimiTaheri A, Smith C W, et al. Strengthening study on 6082 Al alloy after combination of aging treatment and ECAP process[J]. Materials Science and Engineering: A, 2010,527(18-19): 4758-4766.

[18]Cabibbo M, Evangelista E, Vedani M. Influence of severe plastic deformations on secondary phase precipitation in a 6082 Al-Mg-Si alloy[J].Metallurgical and Materials Transactions A, 2005, 36:1353-1364.

[19]党小荔. A1-1.04Mg-0.85Si铝合金热变形行为及组织、性能研究[D]. 长沙:中南大学,2012.

Dang X L. Study on Hot Deformation Behavior, Microstructure and Properties of Al-1.04Mg-0.85Si Aluminum Alloy[D].Chang-sha: Central South University, 2012.

[20]Wang X F, Shi T Y, Wang H B, et al. Effects of strain rate on mechanical properties, microstructure and texture of Al-Mg-Si-Cu alloy under tensile loading[J]. Transactions of Nonferrous Metals Society of China, 2020,30(1):27-40.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9