网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
双板件电磁翻边成形效率研究
英文标题:Study on forming efficiency of electromagnetic flanging for double-sheet
作者:邱立  刘洪池  姜晨非  罗宝妮  李智 
单位:三峡大学 梯级水电站运行与控制湖北省重点实验室 
关键词:电磁翻边成形 圆孔翻边 双板件 成形效率 塑性应变能 
分类号:TM154
出版年,卷(期):页码:2022,47(5):96-102
摘要:

 针对电磁翻边成形技术成形效率低的问题,提出了双板件电磁翻边成形技术。在阐明双板件电磁翻边成形原理的基础上,构建了传统单板和双板件两组仿真模型,并从驱动线圈电流波形、磁通密度、电磁力、塑性应变能、成形效率5个方面进行对比分析。结果表明:在相同的放电能量下,双板件仿真模型的塑性应变能比传统单板提高了52.28%;在相同的翻边角度下,双板件仿真模型所需的放电能量仅为传统单板仿真模型两次放电能量的60.60%,能量利用率提高了39.40%。双板件电磁翻边成形技术可使用单个驱动线圈同时实现两个板件的翻边,能够有效地解决电磁翻边成形效率低的问题,促进了电磁翻边成形技术在工业领域的广泛运用。

For the problem of low forming efficiency for electromagnetic flanging technology, the electromagnetic flanging technology of double-sheet was proposed. Then, on the basis of clarifying the principle for electromagnetic flanging of double-sheet, two simulation models of the traditional single-sheet and double-sheet were constructed, and the five aspects of driving coil current waveform, magnetic flux density, electromagnetic force, plastic strain energy and forming efficiency were compared and analyzed. The results show that under the same discharge energy, the plastic strain energy of the double-sheet simulation model is 52.28% higher than that of the traditional single-sheet, and at the same flanging angle, the discharge energy required by the double-sheet simulation model is only 60.60% of the two discharge energies for the traditional single-sheet simulation model, so the energy utilization rate is increased by 39.40%. Obviously, the electromagnetic flanging technology of double-sheet can use a single drive coil to realize the flanging of two sheets at the same time, effectively solves the problem of low forming efficiency for electromagnetic flanging and promotes the wide application of electromagnetic flanging technology in the industry field.

基金项目:
国家自然科学基金资助项目(51877122、51507092)
作者简介:
作者简介:邱 立(1984 -),男,博士,副教授,E-mail:Doctor_QiuL@163.com;通信作者:李 智(1996 -),男,硕士研究生,E-mail:1109910734@qq.com
参考文献:

 [1]张文沛, 李欢欢,胡志力,.车用轻量化铝合金材料本构关系研究进展[J]. 材料导报,2017,31(7):85-89,112.


Zang W P, Li H H, Hu Z L, et al. Progress in constitutive relationship research of aluminum alloy for automobile lightweighting[J]. Materials Reports, 2017,31(7):85-89,112.


[2]邱立, 李彦涛,苏攀,.电磁成形中电磁技术问题研究进展[J].电工技术学报,2019,34(11):2247-2259.


Qiu L, Li Y T, Su P, et al. Study on electromagnetic problems in electromagnetic forming process[J].Transactions of China Electrotechnical Society,2019,34(11):2247-2259.


[3]Qiu L, Deng K, Yang X S,et al. Electromagnetic force distribution and forming performance in electromagnetic tube expansion with axial compression[J]. IEEE Access, 2020, 8:134514-134523.


[4]初红艳, 费仁元,陆辛.脉冲电流频率对电磁成形板料变形高度的影响[J].北京工业大学学报,200329(3):273-277.


Chu H Y, Fei R Y, Lu X. Effect of impulse current frequency on sheet metal deformation height in electromagnetic forming[J]. Journal of Beijing University of Technology,200329(3):273-277.


[5]Qiu L, Wang Y D, Zhang W, et al. Electromagnetic force distribution and axial deformation uniformity analysis of dual-coil electromagnetic tube compression method[J]. IEEE ACCESS, 2020, 8:143502-143508.


[6]Bühler H, Finkenstein E. Hochgeschwindigkeitsumformung rohr-frmige werkstücke durch magnetische krfte[J]. Bnder, Bleche und Rohre, 1966,3:115-123.


Bühler H, Finkenstein E. High speed forming tubular workpieces through magnetic forces [J]. Ribbons, Sheets and Pipes, 1966,3: 115-123.


[7]Li Z, Abu-Siada A,Zhu H Y,et al. Study on the efficiency of simultaneous tube compression and expansion electromagnetic forming[J].IEEE Access,2021,9:30035-30042.


[8]Qiu L, Zhang W, Abu-Siada A, et al. Electromagnetic force distribution and wall thickness reduction of three-coil electromagnetic tube bulging with axial compression[J]. IEEE Access, 2020, 8:21665-21675.


[9]Qiu L, Wang B, Abu-Siada A, et al. Research on forming efficiency in double-sheet electromagnetic forming process[J]. IEEE Access, 2020, 8:19248-19255.


[10]Qiu L, Zhang W, Abu-Siada A, et al. Analysis of electromagnetic force and formability of tube electromagnetic bulging based on convex coil[J]. IEEE Access, 2020, 8:33215-33222.


[11]Psyk V, Risch D, Kinsey B L, et al.Electromagnetic forming-A review[J].Journal of Materials Processing Technology, 20112115):787-829.


[12]杨军, 陈文峰.电磁成形中成形效率的探讨[J].电加工与模具,2003,(4):30-31,58-62.


Yang J,Chen W F. The discussion of efficiency in electromagnetic forming[J].Electromachining & Mould,2003,(4):30-31,58-62.


[13]Yu H P, Li C F. Effects of current frequency on electromagnetic tube compression[J]. Journal of Materials Processing Technology, 2009,209(2), 1053-1059.


[14]朱月亭, 莫健华,崔晓辉,.线圈和模具结构对板材电磁脉冲成形效率的影响[J].锻压装备与制造技术,2015,50(3):94-99.


Zhu Y T, Mo J H, Cui X H, et al. Effects of the die radius and coil structures on electromagnetic pulsed forming[J]. China Metalforming Equipment & Manufacturing Technology,2015,50(3):94-99.


[15]Qiu L, Deng K, Abu-Siada A, et al. Construction and analysis of two-dimensional axisymmetric model of electromagnetic tube bulging with field shaper[J]. IEEE Access, 2020, 8:113713-113719.


[16]Kleiner M, Beerwald C, Homberg W. Analysis of process parameters and forming mechanisms within the electromagnetic forming process[J]. CIRP Annals-Manufacturing Technology, 2005, 54(1): 225-228.


[17]Jablonski J, Winkler R, Analysis of the electromagnetic forming process[J]. International Joernal Mechanical Sciences,1978,20(5): 315-325.


[18]Zhang H, Murata M, Suzuki H. Effects of various working conditions on tube bulging by electromagnetic forming[J]. Journal of Materials Processing Technology, 1995, 48(1-4):113-121.


[19]靳舜尧, 唐振宇,黄重国. 5A02铝合金薄壁异形管内高压成形数值模拟及试验[J].稀有金属,2020,44(11):1121-1128.


Jin S Y, Tang Z Y, Huang Z G. Numerical simulation and experiment of internal high pressure formingIHPFof 5A02 aluminum alloy thin-walled shaped tubes[J].Chinese Journal of Rare Metals2020,44(11):1121-1128.


[20]靳舜尧, 黄重国, 李升. 固溶热处理对新型核用FeCrAl合金包壳管组织和力学性能的影响[J].稀有金属,2021,45(1):10-18.


Jin S YHuang Z GLi S. Microstructure and mechanical properties of a new nuclear FeCrAl alloy cladding tubes with solution heat treatment[J].Chinese Journal of Rare Metals2021,45(1):10-18.

服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9