网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
X形管内高压成形过程的加载路径优化
英文标题:Optimization on loading path in hydroforming process for X-type tube
作者:冯莹莹 刘照松 张宏阁 骆宗安 
单位:东北大学 一汽轿车股份有限公司 
关键词:加载路径 X形管 内高压成形 最小壁厚 支管高度 极限圆角半径 
分类号:TG394
出版年,卷(期):页码:2022,47(5):121-127
摘要:

加载路径对X形管内高压成形质量至关重要,只有加载路径的各参数匹配得当,才能获得合格的成形件。利用DYNAFORM软件模拟不同加载路径下X形管的成形性能。并基于Box-Behnken Design 试验设计和响应面法,以内压力、轴向进给量、背向位移量以及摩擦因数为试验因素,分别建立以最小壁厚、支管高度和极限圆角半径为目标的响应面模型。通过方差分析和回归方程分析,对X形管内高压成形过程的加载路径进行设计和优化,有效地改善了壁厚分布、减小了极限圆角半径、提高了支管高度。采用软件的数值优化功能筛选出最优的加载路径,并在此加载路径下对X形管内高压成形模拟结果和试验结果进行对比,发现误差在5%以内,并且壁厚分布具有一致性,说明了该加载路径优化方法具有较高的准确性和较好的可行性。

The loading path is very important to the hydroforming quality of X-type tube. Only when the various parameters of the loading path are properly matched, the qualified formed parts can be obtained. Therefore, the formability of X-type tube under different loading paths was simulated by software DYNAFORM. Then, based on the test design of Box-Behnken Design and response surface method, taking the internal pressure, axial feeding amount, back displacement and friction coefficient as the main test factors and the minimum wall thickness, branch pipe height and ultimate fillet radius as the objectives, the response surface model was established, and the loading path of X-type tube hydroforming process was designed and optimized by the analysis of variance and regression equation, which improved the wall thickness distribution, reduced the ultimate fillet radius and increased the branch pipe height. Furthermore, the optimal loading path was selected by the numerical optimization function of software, and under this loading path, the simulation results of X-type tube hydroforming were compared with the test results. The result shows that the error is less than 5%, and the wall thickness distribution is consistent, which indicates that the loading path optimization method has high accuracy and good feasibility.

基金项目:
国家自然科学基金资助项目(52105322)
作者简介:
作者简介:冯莹莹(1982-),女,博士,副研究员,E-mail:fengyy@ral.neu.edu.cn
参考文献:

[1]Chen M T, Xiao X TTong J H, et al. Optimization of loading path in hydroforming of parallel double branched tube through response surface methodology[J]. Advances in Engineering Software, 2018, 115: 429-438.


[2]Zhang Z C, Kang Y J, Furushima T, et al. Deformation behaviour of metal micro tube during hydroforming process[J]. Procedia Manufacturing, 2020, 50:328-331.


[3]Bell C, Corney J, Zuelli N, et al. A state of the art review of hydroforming technologyIts applications, research areas, history, and future in manufacturing[J]. International Journal of Material Forming, 2020, 13(5): 789-828.


[4]Chen M T, Xiao X T, Guo H, et al. Deformation behavior, microstructure and mechanical properties of pure copper subjected to tube hydroforming[J]. Materials Science and Engineering A, 2018, 731: 331-343.


[5]陈名涛, 肖小亭, 周富强. 单侧并列双支管内高压成形应力与应变分析及金属流动研究[J]. 锻压技术, 2021, 46(4): 106-110.


Chen M T, Xiao X T, Zhou F Q. Research on stress, strain and metal flow in hydroforming for unilateral parallel double branch tube[J]. Forging & Stamping Technology, 2021, 46(4): 106-110.


[6]Alaswad A, Benyounis K Y, Olabi A G. Tube hydroforming process: A reference guide[J]. Materials & Design, 2012, 33: 328-339.


[7]徐勇, 夏亮亮, 李明, . 管材液力成形技术的研究进展[J]. 锻压技术, 2021, 46(4): 29-35.


Xu Y, Xia L L, Li M, et al. Research progress on hydro-mechanical forming technology for tube[J]. Forging & Stamping Technology, 2021, 46(4): 29-35.


[8]苑世剑. 现代液压成形技术 [M]. 2. 北京: 国防工业出版社, 2016.


Yuan S J. Modern Hydroforming Technology[M]. 2nd Edition. Beijing: National Defense Industry Press, 2016.


[9]Ren N, Zhan M, Yang H, et al. Constraining effects of weld and heat-affected zone on deformation behaviors of welded tubes in numerical control bending process[J]. Journal of Materials Processing Technology, 2012, 212(5): 1106-1115.


[10]苑世剑, 何祝斌, 刘钢,. 内高压成形理论与技术的新进展[J]. 中国有色金属学报, 2011, 21(10): 2523-2533.


Yuan S J, He Z B, Liu G, et al. New developments in theory and processes of internal high pressure forming[J]. The Chinese Journal of Nonferrous Metals, 2011, 21(10): 2523-2533.


[11]Ma Y, Xu Y, Zhang S H, et al. The effect of tube bending, heat treatment and loading paths on process responses of hydroforming for automobile intercooler pipe: numerical and experimental investigations[J]. The International Journal of Advanced Manufacturing Technology, 2017, 91(5-8): 2369-2381.


[12]Kadkhodayan M, Moghadam A E. Optimization of load paths in X- and Y-shaped hydroforming[J]. International Journal of Material Forming, 2013, 6(1): 75-91.


[13]Cai Y, Liu Q, Wang X S, et al. Thickness distribution and size deviation of 6063 alloy irregular tubular parts prepared by hydroforming[J]. The Chinese Journal of Nonferrous Metals, 2015, 25(9): 2372-2380.


[14]Fiorentino A, Ceretti E, Giardini C. Tube hydroforming compression test for friction estimation-numerical inverse method, application, and analysis[J]. The International Journal of Advanced Manufacturing Technology, 2013, 64(5-8): 695-705.

服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9