网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
沙柳颗粒致密成型过程中的颗粒运动及能量分析
英文标题:Analysis on particle movement and energy in dense molding process of salix particles
作者:李震 于今 于跃 万涛 郝宇超 
单位:内蒙古科技大学 
关键词:沙柳颗粒 致密成型 压力 动能 粘结能 
分类号:TK6
出版年,卷(期):页码:2022,47(5):135-143
摘要:

为了研究沙柳致密成型过程中颗粒运动及能量变化的规律,运用离散元颗粒流软件PFC3D建立了长径比为5∶1的颗粒模型。按照应力-应变曲线的特点,将沙柳致密成型过程划分为3个阶段:松散阶段、压密阶段和塑性阶段,从3个阶段中各选取一个时间点,对颗粒速度变化、位移变化、受力分量的变化以及能量变化进行细致分析。结果表明:颗粒速度及位移变化的主要影响因素为压力,在压力传递过程中,颗粒间接触力和墙体的反作用力不断变化,沿X轴、Y轴方向的速度分量和位移分量渐渐增多;从松散阶段到压密阶段,颗粒位置重新排列,间隙不断改变,动能呈现波动性变化;在塑性阶段时,压力克服颗粒间作用力的最大值,颗粒变形产生塑性流动,间隙不断减小,动能逐渐增大。在整个压缩过程中,粘结能增长趋势放缓,其他耗散能所占的比重逐渐增加,为了减少能量的损耗,应把应变值控制在较小的范围内。

In order to study the laws of particle movement and energy change in the dense molding process of salix, a particle model with aspect ratio of 5∶1 was established by discrete element particle flow software PFC3D. Then, according to the characteristics of stress-strain curve, the dense molding process of salix particles was divided into three stages, such as loose stage, compaction stage and plastic stage. Furthermore, from each of the three stages, a time point was selected to detailed analyze the changes of particle velocity, displacement, force component and energy. The results show that the main influencing factor of particle velocity and displacement changes is pressure. During the process of pressure transmission, the contact force between particles and the reaction force of wall change continuously, and the velocity component and displacement component along the X-axis and Y-axis direction gradually increase. From the loose stage to the compaction stage, the particle position is rearranged and the gap changes continuously, and the kinetic energy shows fluctuating changes. In the plastic stage, the pressure overcomes the maximum force between particles, the particle deformation produces plastic flow, the gap decreases continuously, and the kinetic energy increases gradually. In the whole compression process, the growth trend of bond energy slows down, and the proportion of other dissipated energy gradually increases. Thus, in order to reduce the loss of energy, the strain value should be controlled within a small range.

基金项目:
内蒙古自治区自然科学基金资助项目(2020LH05020);国家自然科学基金资助项目(51666016)
作者简介:
作者简介:李 震(1973-),男,博士,教授,E-mail:lizhen_730106@126.com;通信作者:于 今(1992-),男,硕士,E-mail:570844146@qq.com
参考文献:

[1]Jaghargh M J P, Mashhadi H R. An analytical approach to estimate structural and behavioral impact of renewable energy power plants on LMP[J]. Renewable Energy, 2021,163:1012-1022.


[2]曹磊. 秸秆转化为生物质能源的利用策略研究[J].农业技术与装备,2020371(11):91-92.


Cao L. Study on utilization strategy of straw transforming into biomass energy[J]. Agricultural Technology & Equipment, 2020,371(11): 91-92.


[3]Adapa P K, Tabil L G, Schoenau G J. Compression characteristics of selected ground agricultural biomass[J]. Agricultural Engineering International: the CIGR Ejournal, 2009, 11(6): 1-19.


[4]Poddar S, Kamruzzaman M, Sujan S M A, et al. Effect of compression pressure on lignocellulosic biomass pellet to improve fuel properties: Higher heating value[J]. Fuel, 2014, 131: 43-48.


[5]王功亮, 姜洋,李伟振,.基于响应面法的玉米秸秆成型工艺优化[J].农业工程学报,2016,32(13):223-227.


Wang G L, Jiang Y, Li W Z, et al. Process optimization of corn stover compression molding experiments based on response surface method[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(13): 223-227.


[6]闫石. 生物质燃料压缩成型技术与燃烧特性研究[D].石家庄:河北科技大学,2013.


Yan S. Study on the Compression Molding Technology and the Combustion Characteristics of Biomass Fuel[D]. ShijiazhuangHebei University of Science & Technology, 2013.


[7]李安心. 水稻秸秆热压成型及其成型燃料热重试验研究[D].马鞍山:安徽工业大学,2016.


Li A X. The Research on Rice Straw Hot Press Mold Experiment and Thermogravimetric Experiment of Pellets[D]. Ma′anshan:Anhui University of Technology, 2016.


[8]王煜, 付建新,汪杰.单裂隙岩石力学特性的单轴加载速率效应及破裂细观机理研究[J].矿业研究与开发,2020,40(8):66-74.


Wang Y, Fu J X, Wang J. Study on uniaxial loading rate effect and fracture mesoscopic mechanism of mechanical properties of single fractured rock[J]. Mining Research and Development, 2020, 40(8): 66-74.


[9]李运. 颗粒的相互作用与宏观力学性质的关系研究[D].西安:西安理工大学,2017.


Li Y. Study on the Relationship Between Particle Interaction and Macro Mechanical Properties[D]. Xi′an:Xi′an University of Technology, 2017.


[10]李震, 王宏强,高雨航,.沙柳生物质颗粒致密成型特性的离散元仿真[J].锻压技术,2020,45(3):152-158.


Li Z, Wang H Q, Gao Y H, et al. Discrete element simulation on dense forming characteristics for Salix biomass particles[J]. Forging & Stamping Technology, 2020, 45(3): 152-158.


[11]李震, 高雨航,刘彭,.沙柳细枝颗粒致密成型过程中力链演变的离散元研究[J].太阳能学报,2019,40(11):3186-3195.


Li Z, Gao Y H, Liu P, et al. Discrete element study on evolution of force-chain during salix grains dense molding [J]. Acta Energiae Solaris Sinica, 2019,40(11): 3186-3195.


[12]肖文波, 胡林,武玉琴.颗粒物质中滑动摩擦力的变化规律[J].应用力学学报,200522(4):643-646683.


Xiao W B, Hu L, Wu Y Q. Law of sliding friction force in granular materials[J]. Chinese Journal of Applied Mechanics, 200522(4): 643-646683.


[13]唐立新. 生物质致密成型温度场分布模拟研究[D].包头:内蒙古科技大学,2020.


Tang L X. Simulation Study on Temperature Distribution of Biomass Compact Forming[D]. BaotouInner Mongolia University of Science & Technolog, 2020.


[14]毕继红, 王晖.工程弹塑性力学[M].天津:天津大学出版社,2008.


Bi J H, Wang H. Engineering Elasto-plastic Mechanics [M]. TianjinTianjin University Press, 2008.


[15]周益春. 材料固体力学[M].北京:科学出版社,2005.


Zhou Y C. Solid Mechanics in Materials[M]. BeijingScience Press, 2005.


[16]于今. 水份对沙生灌木颗粒致密成型影响的研究[D].包头:内蒙古科技大学,2021.


Yu J. Research on the Influence of Moisture Content on the Densification of Sand Shrubs Particles[D]. BaotouInner Mongolia University of Science & Technology, 2021.


[17]霍丽丽, 赵立欣,田宜水,等.生物质颗粒燃料成型的黏弹性本构模型[J].农业工程学报,2013,29(9):200-206.


Huo L L, Zhao L X, Tian Y Set al. Viscoelastic constitutive model of biomass pellet [J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(9):200-206.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9