网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
多工位冲压自动送料系统运动规划仿真及实验验证
英文标题:Simulation and experimental verification on motion planning for multi-station stamping automatic feeding system
作者:汪永明 李偎 胡继涛 谈莉斌 董书豪 
单位:安徽工业大学 
关键词:多工位冲压 自动送料系统 运动规划 自动化加工 销合链链板 
分类号:TP241.3
出版年,卷(期):页码:2022,47(5):167-174
摘要:

基于销合链链板多工位冲压自动化加工平台,对其自动送料系统的运动可靠性展开研究。首先,依据实际工况,对自动送料系统的动作需求进行分析,并完成各运动部件的运动规划及动作时序的划分。然后,基于ADAMS软件建立自动送料系统的仿真模型,设置好仿真参数和各运动的驱动约束函数,通过运动仿真获得各构件的位移、受力和力矩的变化曲线;对自动送料系统的末端执行机构的水平、竖直方向的速度与加速度进行分析。最后,在完成控制系统设计的基础上,搭建了销合链链板多工位冲压自动化加工平台样机,并进行实验验证。实验结果表明:销合链链板多工位自动冲压的生产效率可以达到6~7 件·min-1,满足销合链链板生产节拍≤10 s/件的要求。 

Based on the multi-station stamping automation processing platform of pin-joint chain plate, the movement reliability of its automatic feeding system was studied. First of all, according to the actual working conditions, the motion requirements of the automatic feeding system was analyzed, and the motion planning of each moving part and the division of action sequence were completed. Then, based on software ADAMS, a simulation model of the automatic feeding system was established, the simulation parameters and the driving constraint function of each movement were set up, and the change curves of displacement, force and torque for each component were obtained through motion simulation. Furthermore, the velocity and acceleration of end effector for the automatic feeding system in the horizontal and vertical directions were analyzed. Finally, on the basis of completing the control system design, a prototype of the multi-station stamping automation processing platform for the pin-joint chain plate was built, and the experimental verification was carried out. The experimental results show that the production efficiency of multi-station automatic stamping for pin-joint chain plate can reach 6-7 pieces per minute, which meets the requirement that the production cycle of pin-joint chain plate is less than ten seconds per piece.

基金项目:
安徽省重点研究与开发计划项目(202004a05020008)
作者简介:
作者简介:汪永明(1971-),男,博士,教授,E-mail:wangym@ahut.edu.cn
参考文献:

[1]吴志鹏, 赵安安, 郑炜, . 面向复杂大部件装配的多机器人制造系统运动规划研究进展[J]. 机械科学与技术,2021406):969-978.


Wu Z P, Zhao A A, Zheng W, et al. Reserach of motion planning of multi-robot manufacturing system for assembly of flexible large components[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(6): 969-978.


[2]徐晓慧, 张金龙. 代价函数引导的机械臂运动规划算法[J]. 机械科学与技术, 2020, 39(1): 62-67.


Xu X H, Zhang J L. A robot arm motion planning algorithm guided by cost function[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(1): 62-67.


[3]段现银, 张灿, 朱泽润, . 逆解多目标优化的六自由度机械手轨迹规划[J]. 系统仿真学报, 2021, 33(9): 2128-2137.


Duan X Y, Zhang C, Zhu Z R, et al. Trajectory planning of 6-DOF manipulator based on inverse multi-objective optimization[J]. Journal of System Simulation2021, 33(9): 2128-2137.


[4]Samaneh H S, Hugh L, Michael E, et al. Multi-agent motion planning for dense and dynamic environments via deep reinforcement learning[J]. IEEE Robotics and Automation Letters, 2020, 5(2): 3221-3226.


[5]沈桐, 宋成利, 徐兆红. 新型混联腹腔镜手术机器人的运动学建模与优化[J].机械科学与技术, 2016, 35(1): 56-62.


Shen T, Song C L, Xu Z H. Kinematics modeling and optimization of a hybrid robotic manipulator for laparoscopic surgery[J]. Mechanical Science and Technology for Aerospace Engineering, 2016, 35(1): 56-62.


[6]孙朝阳, 李贵, 刘耀东, . 激光拼焊板翻转机械夹持器结构设计与仿真分析[J]. 锻压技术, 2020, 45(5): 140-146.


Sun C Y, Li G, Liu Y D, et al. Structural design and simulation analysis on mechanical gripper for welding tailored blank overturning[J]. Forging & Stamping Technology, 2020,45(5): 140-146.


[7]张忠雷, 金振林,张金柱. 新型送料机械手及其工作空间分析[J]. 中国机械工程, 2016, 27(13): 1743-1747.


Zhang Z L, Jin Z L, Zhang J Z. Workspace analysis of a novel feeding manipulator[J]. China Mechanical Engineering, 2016, 27(13): 1743-1747.


[8]Di Y P, Wu H T, Liu H B. Dynamic simulation of automatic feeding punch mechanism based on ADAMS[J]. Advanced Materials Research, 2013, 655-657253-256.


[9]于涛, 邓增阁, 郭涛, . 大型闭式压力机单机自动化上下料机械手机械结构设计与仿真[J]. 锻压技术, 2020, 45(3): 109-113.


Yu T, Deng Z G, Guo T, et al. Mechanical structure design and simulation of single-machine automatic loading and unloading manipulator for large closed press[J]. Forging & Stamping Technology, 2020, 45(3): 109-113.


[10]朱仁淼, 唐敦兵, 徐亮亮, . 大型压力机电子伺服三坐标多工位送料系统研发[J]. 中国机械工程, 2011, 22(24): 2970-2976.


Zhu R M, Tang D B, Xu L L,et al. Research and development of electronic servo tri-axis multi-position transfer system for large-scale press[J]. China Mechanical Engineering, 2011, 22(24): 2970-2976.


[11]Luo L, Wei Z C, Jin A M,et al. The design of automatic loading-and-unloading material manipulator for telescopic punch[J]. Computer Aided Drafting, Design and Manufacturing, 2016, 26(2): 58-62.


[12]侯雨雷, 张志强,谭候金,. 冲压自动线机器人与压力机动作协调及其运动仿真[J]. 中国机械工程,2013,24(23):3186-3190.


Hou Y L, Zhang Z Q, Tan H J, et al. Motor coordination and motion simulation of robot and press in a press line[J]. China Mechanical Engineering, 2013, 24(23): 3186-3190.


[13]郑方圆, 张扬, 申琨凡, . 无人机机械臂抓取动作的协调运动规划[J]. 机械设计, 2022, 39(2): 24-29.


Zheng F Y, Zhang Y, Shen K F, et al. Coordinated motion planning of unmanned aerial vehicle′s manipulator in the process of grasping manoeuvre[J]. Journal of Machine Design, 2022, 39(2): 24-29.


[14]张志刚, 刘战强, 李志强, . 基于冲压运动仿真的汽车外覆盖件冲压线运动规划[J]. 计算机集成制造系统, 202026(3)688-696.


Zhang Z G, Liu Z Q, Li Z Q, et al. Motion planning and simulation of auto body panels stamping line based on PLS[J]. Computer Integrated Manufacturing Systems, 2020, 26(3): 688-696.


[15]顾以进. 钣金冲压自动上下料机械手的研究与开发[D].哈尔滨:哈尔滨工业大学,2015.


Gu Y J. The Research and Development of Automatic Loading and Unloading Robot for Sheet Metal Stamping [D]. Harbin: Harbin Institute of Technology, 2015.


[16]周玉明. 冲压生产线自动送料装置设计与仿真分析[D]. 重庆:重庆大学,2016.


Zhou Y M. Design and Simulation of the Automated Feeding Device for a Press Line[D]. Chongqing: Chongqing University, 2016.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9