[1]Choi J, Choi B, Heo S, et al. Numerical modeling of the thermal deformation during stamping process of an automotive body part[J]. Applied Thermal Engineering, 2018, 128:159-172.
[2]Dwivedi R, Agnihotri G. Study of deep drawing process parameters[J]. Materials Today Proceedings, 2017, 4(2):820-826.
[3]Takalkar A S, Babu M C L. A review on effect of thinning, wrinkling and spring-back on deep drawing process[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2019, 233(4):1011-1036.
[4]Li Z F, Lu S H, Zhang T, et al. A simple and low-cost lubrication method for improvement in the surface quality of incremental sheet metal forming[J]. Transactions of the Indian Institute of Metals, 2018, 71(7):1715-1719.
[5]Wang Z, Zhang Q C, Liu Y Q, et al. A robust and accurate geometric model for automated design of drawbeads in sheet metal forming[J]. Computer-Aided Design, 2017, 92:42-57.
[6]Ko D C, Cha S H, Lee S K, et al. Application of a feasible formability diagram for the effective design in stamping processes of automotive panels[J]. Materials & Design, 2015, 31(3):1262-1275.
[7]Naceur H, Guo Y Q, Batoz J L, et al. Optimization of drawbead restraining forces and drawbead design in sheet metal forming process[J]. International Journal of Mechanical Sciences, 2001, 43(10): 2407-2434.
[8]Schmid H, Hetz P, Merklein M. Failure behavior of different sheet metals after passing a drawbead[J]. Procedia Manufacturing, 2019, 34:125-132.
[9]Jansson T, Andersson A, Nilsson L. Optimization of draw-in for an automotive sheet metal part: An evaluation using surrogate models and response surfaces[J]. Journal of Materials Processing Technology, 2005, 159(3):426-434.
[10]Ingarao G, Lorenzo R D. Optimization methods for complex sheet metal stamping computer aided engineering[J]. Structural and Multidisciplinary Optimization, 2010, 42(3):459-480.
[11]Zhang Z Q, Jia X F, Wang Y J, et al. Optimization analysis of initial sheet metal contour line for high-strength boron steel in hot stamping[J]. Strength of Materials, 2016, 48(1):77-81.
[12]Yang H, Li H, Zhan M. Friction role in bending behaviors of thin-walled tube in rotary-draw-bending under small bending radii[J]. Journal of Materials Processing Technology, 2010, 210(15): 2273-2284.
[13]Leu D K. Evaluation of friction coefficient using indentation model of Brinell hardness test for sheet metal forming[J]. Journal of Mechanical Science & Technology, 2011, 25(6):1509-1517.
[14]符永宏, 杨守军,许华,等.基于均匀性的模具表面复合织构[J].江苏大学学报:自然科学版,2014,35(3):343-348.
Fu Y H, Yang S J, Xu H, et al. Composite texture of mold surface based on uniformity[J]. Journal of Jiangsu University:Natural Science Edition,2014, 35(3): 343-348.
[15]何梦虎, 符昊,符永宏,等.复合织构模具对筒形件成形影响的数值模拟及实验研究[J].塑性工程学报,2020,27(12):58-65.
He M H, Fu H, Fu Y H, et al. Numerical simulation and experimental study on influence of composite texture die on forming of cylindrials parts[J]. Journal of Plasticity Engineering, 2020, 27(12):58-65.
[16]Hassan M A, Takakura N, Yamaguchi K. A novel technique of friction aided deep drawing using a blank-holder divided into four segments[J]. Journal of Materials Processing Technology, 2005, 139(1-3):408-413.
[17]Chen P, Liu X J, Huang M J, et al. Numerical simulation and experimental study on tribological properties of stamping die with triangular texture[J]. Tribology International, 2018, 132: 244-252.
[18]Zein H, El Sherbiny M, Abd-Rabou M, et al. Thinning and spring back prediction of sheet metal in the deep drawing process[J]. Materials & Design, 2014, 53:797-808.
[19]Kitamura K, Makino T, Nawa M, et al. Tribological effects of punch with micro-dimples in blanking under high hydrostatic pressure[J]. CIRP Annals-Manufacturing Technology, 2016, 65(1):249-252.
[20]Yang X P, Fu Y H, Ji J H, et al. Study on tribological properties of surface concave convex micro-texture on the mold steel[J]. Industrial Lubrication and Tribology, 2020,72(10):1167-1171.
[21]方开泰. 均匀设计与均匀设计表[M].北京:科学出版社,1994.
Fang K T. Uniform Design and Uniform Design Table[M]. Beijing: Science Press, 1994.
|