网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
微合金化高强钢的热变形行为及物理本构方程
英文标题:Hot deformation behaviors and physical constitutive equation of microalloyed high-strength steel
作者:魏海莲 周红伟 潘红波 
单位:安徽工业大学 冶金减排与资源综合利用教育部重点实验室 
关键词:微合金化高强钢 热变形 流变应力 动态再结晶 物理本构方程 
分类号:TG142
出版年,卷(期):页码:2022,47(5):217-225
摘要:

采用Gleeble-1500型热模拟机对微合金化高强钢在变形温度为900~1100 ℃、应变速率为0.01~30 s-1的条件下进行热压缩实验,得到流变应力曲线。分析高强钢的动态再结晶行为,分别采用综合考虑杨氏模量E和奥氏体自扩散系数D对绝对温度依赖性的、包含可变应力指数n的物理本构方程和蠕变应力指数为5的物理本构方程,建立实验钢应变补偿的流变应力预测模型。结果表明:随着变形温度的升高和应变速率的降低,动态再结晶更易于发生。利用应变补偿的物理本构方程预测流变应力的精度较高,其中,包含可变应力指数n的物理本构方程的预测精度(相关系数R=0.991,平均相对误差δ=4.81%)高于蠕变应力指数为5的物理本构方程(相关系数R=0.989,平均相对误差δ=6.49%)。这是由于:当物理本构方程中的蠕变应力指数为5时,材料的变形机制仅有滑移和攀移,而包含可变应力指数n的物理本构方程综合考虑了所有的变形机制,预测精度更高。

The rheological stress curves of microalloyed high-strength steel were obtained by hot compression experiment with thermal simulator Gleeble-1500 under the conditions for deformation temperature of 900-1100 ℃ and strain rate of 0.01-30 s-1, and the dynamic recrystallization behavior of the high-strength steel was analyzed. Then, a rheological stress prediction models for the strain compensation of the experimental steel were established by adapting the physical constitutive equations considering the absolute temperature dependence of Young′s modulus E and austenite self-diffusion coefficient D with variable stress exponent n and creep stress exponent of 5, respectively. The results show that with the increasing of deformation temperature and the decreasing of strain rate, the dynamic recrystallization is more likely to occur, and the accuracy of predicting rheological stress using the strain-compensated physical constitutive equation is relatively high. And the prediction accuracy of the physical constitutive equation with the variable stress exponent n (correlation coefficient R=0.991, average relative error δ=4.81%) is higher than that of the physical constitutive equation with the creep stress exponent of 5 (correlation coefficient R=0.989, average relative error δ=6.49%). This is because that when the creep stress exponent in the physical constitutive equation is 5, the deformation mechanism of the material is only slip and climb, but the physical constitutive equation with the variable stress exponent n considers all the deformation mechanisms comprehensively, so the prediction accuracy is higher.

基金项目:
国家自然科学基金资助项目(51774006、U1860105);安徽省自然科学基金资助项目(2008085QE279);先进金属材料绿色制备与表面技术教育部重点实验室主任基金资助项目(GFST2022ZR05)
作者简介:
作者简介:魏海莲(1988-),女,博士,讲师,E-mail:whl0403@126.com;通信作者:潘红波(1978-),男,博士,教授,E-mail:20130007@ahut.edu.cn
参考文献:

[1]潘红波, 阎军, 刘永刚,. 热处理工艺对TRIP钢组织与力学性能的影响[J]. 金属热处理, 2016, 41(1):101-105.


Pan H B, Yan J, Liu Y G, et al. Effect of heat treatment on microstructure and mechanical properties of TRIP steel[J].Heat Treatment of Metals, 2016, 41(1):101-105.


[2]张连腾, 陈乐平,徐勇,.Mg-9Al-3Si-0.375Sr-0.78Y合金的热变形行为及本构模型[J].材料工程,2021,49(2):88-96.


Zhang L TChen L PXu Y, et al. Hot deformation behavior and constitutive equation of Mg-9Al-3Si-0.375Sr-0.78Y alloy[J]. Journal of Materials Engineering, 2021, 49(2):88-96.


[3]周亚利, 杨秋月,张文玮,.具有层片状α相组织的TB8钛合金热变形行为及本构方程[J].材料工程,2021,49(1):75-81.


Zhou Y L, Yang Q Y, Zhang W W, et al. Hot deformation behavior and constitutive equation of TB8 titanium alloy with a lamellar structure of α phase[J]. Journal of Materials Engineering, 2021,49(1):75-81.


[4]赵宇, 徐月,张秀芝. 铸态30Cr2Ni4MoV转子钢基于应变补偿法的高温本构模型[J].锻压技术,2020,45(11):193-198.


Zhao YXu YZhang X Z. High temperature constitutive model on as-cast rotor steel 30Cr2Ni4MoV based on strain compensation method[J]. Forging & Stamping Technology, 2020,45(11):193-198.


[5]王欣, 葛学元,王淼辉, .S390粉末高速钢高温变形流动应力行为与预测[J].锻压技术,2021,46(1):154-163.


Wang X, Ge X Y, Wang M H, et al. Flow stress behavior and prediction of S390 powder metallurgy high speed steel at high temperature deformation[J]. Forging & Stamping Technology, 2021, 46(1):154-163.


[6]任劲宇, 陈飞,张晓峰, .铸态ER8车轮钢的热变形行为及本构模型研究[J].锻压技术,2021,46(1):202-207.


Ren J Y, Chen F, Zhang X F, et al. Study on hot deformation behavior and constitutive model of as-cast E8 wheel steel[J]. Forging & Stamping Technology, 2021,46(1):202-207.


[7]孔晓寒, 陈慧琴,刘建生, . 铸态Q345E钢的本构方程及动态再结晶行为[J].锻压技术,2020,45(11):199-204.


Kong X H, Chen H Q, Liu J S, et al. Constitutive equation and dynamic recrystallization behavior for as-cast Q345E steel[J]. Forging & Stamping Technology, 2020, 45(11):199-204.


[8]张勇, 李鑫旭,韦康,.850 ℃涡轮盘用新型变形高温合金GH4975挤压棒材热变形规律研究[J].金属学报,2020,56(10):1401-1410.


Zhang Y, Li X X, Wei K, et al. Hot deformation characteristics of novel wrought superalloy GH4975 extruded rod used for 850 ℃ turbine disc[J]. Acta Metallurgica Sinica, 2020,56(10):1401-1410.


[9]赵嫚嫚, 秦森,冯捷,.AlNi1Cr9Al(13)Ni(17)WVNbB钢热变形行为的影响[J].金属学报,2020,56(7):960-968.


Zhao M M, Qin S, Feng J, et al. Effect of Al and Ni on hot deformation behavior of 1Cr9Al(1~3)Ni(1~7)WVNbB steel[J]. Acta Metallurgica Sinica, 2020, 56(7): 960-968.


[10]苏煜森, 杨银辉,曹建春,.Ni2101双相不锈钢的高温热加工行为研究[J].金属学报,2018,54(4):485-493.


Su Y S, Yang Y H, Cao J C, et al. Research on hot working behavior of low-nickel duplex stainless steel 2101[J]. Acta Metallurgica Sinica, 2018,54(4):485-493.


[11]Cabrera J M, Al Omar A, Prado J M, et al. Modeling the flow behavior of a medium carbon microalloyed steel under hot working conditions[J]. Metallurgical & Materials Transactions A, 1997, 28(11): 2233-2244.


[12]Cabrera J M, Ponce J, Prado J M. Modeling thermomechanical processing of austenite[J]. Journal of Materials Processing Technology, 2003, 143-144: 403-409.


[13]Cabrera J M, Jonas J J, Prado J M. Flow behaviour of medium carbon microalloyed steel under hot working conditions[J]. Materials Science and Technology, 1996, 12(7): 579-585.


[14]Mirzadeh H, Cabrera J M, Najafizadeh A. Constitutive relationships for hot deformation of austenite[J]. Acta Materialia, 2011, 59(16): 6441-6448.


[15]El Wahabi M, Cabrera J M, Prado J M. Hot working of two AISI 304 steels: A comparative study[J]. Materials Science and Engineering: A, 2003, 343(1-2): 116-125.


[16]Frost H J, Ashby M F.Deformation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics[M]. Oxford: Pergamon Press, 1982.


[17]魏海莲, 刘国权, 肖翔,. 表观的和基于物理的35Mn2钢奥氏体热变形本构分析[J].金属学报, 2013, 49(6):731-738.


Wei H L, Liu G Q, Xiao X, et al. Apparent and physically based constitutive analyses for hot deformation of austenite in 35Mn2 steel[J]. Acta Metallurgica Sinica, 2013, 49(6):731-738.


[18]El-Atya A A, Xu Y, Ha S, et al. Computational homogenization of tensile deformation behaviors of a third generation Al-Li alloy 2060-T8 using crystal plasticity fifinite element method[J]. Materials Science and Engineering: A, 2018, 731(25): 583-594.

服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9