网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
GH3128合金热变形行为与唯象本构模型
英文标题:Thermal deformation behavior and phenomenological constitutive model for GH3128 alloy
作者:杨波 吴诗豪 包振男 袁宝辉 郑凯伦 
单位:中国航发沈阳黎明航空发动机有限责任公司 大连理工大学 
关键词:镍基高温合金  拉伸实验 热变形  唯象本构模型 微观组织 
分类号:TH142.2
出版年,卷(期):页码:2022,47(5):226-234
摘要:

利用室温与高温拉伸实验,探究了GH3128合金在不同温度下的变形行为与微观组织演变规律,发现在温度为1050 ℃、应变速率为1 s-1的条件下材料仍具有较好的硬化能力,且变形均匀。构建了GH3128合金室温和高温两套唯象本构模型:室温模型包括Ludwik模型、Ludwik简单修正模型和Ramberg-Osgood模型,高温模型包括Fields-Backofen(FB)模型和Johnson-Cook(JC)模型,利用构建的模型预测了不同温度与应变速率下GH3128合金的流变行为。结果表明:室温模型方面, Ludwik简单修正模型的预测精度最高,平均误差绝对值AARE为3.64%;高温模型方面,FB模型和JC模型由于唯象本构模型无法描述GH3128合金复杂的微观组织演变,预测精度有限。GH3128合金的热变形行为与唯象本构模型的研究为后续热成形工艺参数选择与有限元仿真提供了有效的指导。

The deformation behavior and microstructure evolution law of GH3128 alloy at different temperatures were investigated by room temperature and high temperature tensile tests, respectively, and it was found that the material still had good hardening ability and uniform deformation under the temperature of 1050 ℃ and the strain rate of 1 s-1. Then, two sets of phenomenological constitutive models of GH3128 alloy at room temperature and high temperature were constructed. The room temperature models included Ludwik model, Ludwik simple modified model and Ramberg-Osgood model, and the high temperature models included Fields-Backofen (FB) model and Johnson-Cook (JC) model. The rheological behavior of GH3128 alloy under different temperatures and strain rates was predicted by the built models. The results show that for the room temperature model, Ludwik simple modified model exhibits the highest prediction accuracy, and the absolute values of average error AARE is 3.64%. For the high temperature model, the prediction accuracy of both FB and JC models are limited because the phenomenological constitutive models cannot describe the complex microstructure evolution of GH3128 alloy. Thus, the study on the thermal deformation behavior and phenomenological constitutive model of GH3128 alloy provides effective guidance for the subsequent selection of hot forming process parameters and finite element simulation.

基金项目:
作者简介:
作者简介:杨 波(1988-),男,硕士,工程师,E-mail:Yangbo19880426@163.com;通信作者:郑凯伦(1988-),男,博士,教授,E-mail:zhengkailun@dlut.edu.cn
参考文献:

[1]滕庆, 孙闪闪, 薛鹏举,. 激光选区熔化/热等静压复合成形Inconel 718组织与性能研究[J]. 航空制造技术, 2020, 63(13):53-60.


Teng Q, Sun S S, Xue P J, et al. Study on microstructure and properties of Inconel 718 fabricated byselective laser melting/hot isostatic pressing hybrid forming process[J]. Aviation Manufacturing Technology, 2020, 63 (13):53-60.


[2]蔺永诚, 陈小敏, 陈明松. 镍基合金的热变形行为及智能热加工技术研究进展[J]. 精密成形工程, 2021, 13(1):1-18.


Lin Y C, Chen X M, Chen M S.Recent development of high-temperature deformation behavior and intelligent processing of Ni-based superalloy[J].Journal of Netshape Forming Engineering, 2021, 13 (1): 1-18.


[3]黄乾尧,李汉康.高温合金[M].北京:冶金工业出版社,2000.


Huang Q YLi H K. Superalloys [M]. Beijing: Metallurgical Industry Press, 2000.


[4]张成祥.典型航空发动机钣金件成形工艺研究[D].南京:南京航空航天大学,2016.


Zhang C X. Research on Forming Process of Typical Sheet Metal Parts in Aviation Engine [D]. NanjingNanjing University of Aeronautics and Astronautics, 2016.


[5]王辰淏. 薄壁管高气压热成形技术与工艺研究[D]. 沈阳:东北大学, 2014.


Wang C H. Research on High Pressure Hot Gas Forming Technology for Thin-wall Tube[D].ShenyangNortheastern University, 2014.


[6]Zhang H B, Qin S X, Li H Pet al. EBSD study of strain dependent microstructure evolution during hot deformation of a typical nickel-based superalloy[J]. Journal of Materials Research, 2018342):1-14.


[7]Zhao X,Zhou Y,Yuan K.Research on tensile properties of Ni-based super alloy GH3128[A].The Proceedings of 24th International Conference on Nuclear Engineering[C]. Charlotte, 2016.


[8]刘庭耀,赖宇,付建辉,.GH3128合金的高温流变行为与组织演变规律[J].金属热处理,2020,45(6):141-148.


Liu T Y, Lai Y, Fu J H, et al. High temperature rheological behavior and microstructure evolution of GH3128 alloy [J]. Heat Treatment of Metals, 2020,45(6):141-148.


[9]吴常钧,金哲学.长期时效和晶粒度对GH333GH128合金热疲劳的影响[J].钢铁研究学报,1986,6(2):33-41.


Wu C J, Jin Z X. Influence of long-term aging and grain size on thermal fatigue property of GH333 and GH128 alloys [J]. Journal of Iron and Steel Research, 1986,6 (2):33-41.


[10]张凯锋,吴德忠,陈国清,.镍基高温合金超塑性成形工艺研究[A].全球华人先进塑性加工技术研讨会论文集[C].北京: 2002.


Zhang K F, Wu D Z, Chen G Q,et al. Study on superplastic forming process of nickel-based superalloy [A].The Proceedings of the Global Chinese Symposium on Advanced Plastic Processing Technology [C]. Beijing:2002.


[11]刘继强,李茂盛,贾新朝,.高精度高温合金薄壁管旋压成形[J].宇航材料工艺,1999,29(6):51-53.


Liu J Q, Li M S, Jia X C,et al. The spinning of high-quality superalloy thin-wall tube [J]. Aerospace Materials and Technology, 1999,29 (6):51-53.


[12]中国金属学会高温合金材料分会.中国高温合金手册[M].北京:中国标准出版社,2012.


Superalloy Materials Branch of China Metal Society. China Superalloys Handbook [M]. Beijing: China Standards Press, 2012.


[13]ASTM E8/E8M—2011,Standard test methods for tension testing of metallic materials[S].


[14]王志彪. 2A12铝合金板材高温本构模型及拼焊板热态气压成形规律[D]. 哈尔滨:哈尔滨工业大学,2020.


Wang Z B. Constitutive Model of 2A12 Aluminum Alloy Sheet and Deformation Behavior of Tailor Welded Blanks in Hot Gas Forming [D]. Harbin: Harbin Institute of Technology, 2020.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9