[1]宋云鹤, 秦雪娇, 鲍益东. 基于DKT12壳单元的板料冲压成形中重力加载变形模拟仿真[J]. 塑性工程学报, 2020, 27(11):65-69.
Song Y H, Qin X J, Bao Y D. Simulation of gravity loading deformation in sheet metal stamping based on dkt12 shell element[J]. Journal of Plasticity Engineering, 2020, 27 (11): 65-69.
[2]Pacheco J B, Santos A D. A study on the nose radius influence in press brake bending operations by finite element analysis[J]. Key Engineering Materials, 2013, 554-557(2):1432-1442.
[3]丁立波, 李健东, 李明杰,等. 高强钢辊弯成形过程中成形力的影响因素研究[J]. 精密成形工程, 2021, 13(4):6-12.
Ding L B, Li J D, Li M J,et al. Study on influencing factors of forming force in roll bending process of high strength steel[J]. Precision Forming Engineering, 2021, 13 (4): 6-12.
[4]洪凯骏, 杜晟强, 昝祥. 不同背压方式对静液挤压过程影响的模拟研究[J]. 精密成形工程, 2019, 11(2):17-21.
Hong K J, Du S Q, Min X. Simulation study on the influence of different back pressure on hydrostatic extrusion process[J]. Precision Forming Engineering, 2019, 11 (2): 17-21.
[5]Nath U, Yadav V, Purohit R. Finite element analysis of AM30 magnesium alloy sheet in the laser bending process[J]. Advances in Materials and Processing Technologies, 2021,(3): 1-13.
[6]方刚, 陈祝, 雷丽萍. 非关联本构模型在铝合金板料成形有限元模拟中的应用[J]. 塑性工程学报, 2021, 28(6):8-18.
Fang G, Chen Z, Lei L P. Application of uncorrelated constitutive model in finite element simulation of aluminum alloy sheet forming[J]. Journal of Plasticity Engineering, 2021, 28 (6):8-18.
[7]熊文韬, 谢三山, 黄兆飞,等. 基于神经网络遗传算法函数寻优与回弹补偿技术的某型汽车前幅拉延成形优化[J]. 塑性工程学报, 2020, 27(6):8-12.
Xiong W T, Xie S S,Huang Z F,et al. Optimization of drawing forming of front panel of an automobile based on neural network genetic algorithm function optimization and springback compensation technology[J]. Journal of Plasticity Engineering, 2020, 27 (6): 8-12.
[8]Liu S, Xia Y, Shi Z. Deep learning in sheet metal bending with a novel theoryguided deep neural network[J]. Journal of Automatica Sinica, 2021, 8(3): 565-581.
[9]张新艳, 郭鹏, 余建波. 应用深度强化学习的压边力优化控制[J]. 哈尔滨工业大学学报, 2020, 52(7):9-13.
Zhang X Y, Guo P, Yu J B. Optimal control of blank holder force using deep reinforcement learning[J]. Journal of Harbin Institute of Technology, 2020, 52 (7): 9-13.
[10]Ingarao G, Di Lorenzo R. Design of complex sheet metal forming processes: a new computer aided progressive approach[J]. International Joural of Material Forming, 2010,3(1): 21-24.
[11]Le T T, Asteris P G, Lemonis M E. Prediction of axial load capacity of rectangular concretefilled steel tube columns using machine learning techniques[J]. Engineering with Computers, 2021: 1-34.
[12]陈光耀,李恒,贺子芮,等. 基于机器学习的管材弯曲回弹有效预测与补偿[J]. 中国机械工程, 2020, 31(22):8-13.
Chen G Y, Li H, He Z R,et al. Prediction and compensation of pipe bending springback based on machine learning[J]. China Mechanical Engineering, 2020, 31 (22): 8-13.
[13]Ly H B, Le T T, Vu H L T, et al. Computational hybrid machine learning based prediction of shear capacity for steel fiber reinforced concrete beams[J]. Sustainability, 2020, 12(7): 2709-2732.
[14]Miranda S S, Barbosa M R, Santos A D, et al. Forming and springback prediction in press brake air bending combining finite element analysis and neural networks[J]. The Journal of Strain Analysis for Engineering Design, 2018, 53(8): 584-601.
[15]Fu Z, Mo J. Springback prediction of highstrength sheet metal under air bending forming and tool design based on GA-BPNN[J]. The International Journal of Advanced Manufacturing Technology, 2011, 53(5): 473-483.
[16]Narayanasamy R, Padmanabhan P. Comparison of regression and artificial neural network model for the prediction of springback during air bending process of interstitial free steel sheet[J]. Journal of Intelligent Manufacturing, 2012, 23(3): 357-364.
[17]Sharad G,Nandedkar V M. Springback in sheet metal U bendingFEA and neural network approach[J]. Pracedia Materials Science, 2014,6:835-839.
[18]ElZeghayar M, Topper T, Bonnen J, et al. Effective strainfatigue life of dual phase 590 steel[A]. Proceedings of the 12th International Conference on Fracture[C]. Ottawa, 2009.
[19]Pham Q T, Kim Y S, Nguyen D T. Application/comparison study of a graphical method of forming limit curve estimation for DP590 steel sheets[J]. Journal of the Korean Society for Precision Engineering, 2019, 36(9): 883-890.
|