网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
Zr1.0Sn1.0Nb0.1Fe合金板材多道次热轧过程的有限元分析
英文标题:Finite element analysis on multi-pass hot rolling process for Zr-1.0Sn-1.0Nb-0.1Fe alloy sheet
作者:吴泽华1 王克鲁1 邓偲瀛2 宋鸿武2 张士宏2 王犇3 
单位:1.南昌航空大学 航空制造工程学院 2.中国科学院金属研究所 师昌绪先进材料创新中心 3.国核宝钛锆业股份公司 
关键词:Zr1.0Sn1.0Nb0.1Fe合金 热变形行为 多道次热轧 温度修正 峰值应力模型 
分类号:TG335.5
出版年,卷(期):页码:2022,47(6):132-140
摘要:

 通过等温热压缩实验研究了Zr1.0Sn1.0Nb0.1Fe合金在变形温度为550600650700 ℃和应变速率为0.010.1110 s-1以及最大变形程度为70%条件下的热变形行为。在考虑变形热效应的基础上,对真应力-真应变曲线进行了温度修正,并在Arrhenius双曲正弦函数方程的基础上建立了峰值应力模型。通过DeformZr1.0Sn1.0Nb0.1Fe合金板材在初始温度为630 ℃和轧制速度为304560 m·min-1条件下从板厚104 mm轧制至19 mm的多道次热轧过程进行了有限元模拟,并与热轧实验结果进行对比,验证了有限元模型的准确性。此外,研究了轧制速度对热轧过程中轧板温度、轧制力以及最终板厚的影响。结果表明:随着轧制速度的增大,轧板的表面温度和心部温度随之增大,而轧制力和最终板厚随之减小。

 The thermal deformation behavior of Zr-1.0Sn-1.0Nb-0.1Fe alloy under the conditions of deformation temperature of 550, 600, 650 and 700 , strain rate of 0.01, 0.1, 1 and 10 s-1 and maximum deformation amount of 70% was studied by isothermal hot compression experiment. Then, on the basis of considering deformation thermal effect, the true stress-ture strain curve was corrected by temperature, and the peak stress model was established on the basis of Arrhenius hyperbolic sine function equation. Furthermore, the multi-pass hot rolling process of Zr-1.0Sn-1.0Nb-0.1Fe alloy sheet at the initial temperature of 630 and the rolling speed of 30, 45 and 60 m·min-1 from the sheet thickness of 104 mm to 19 mm was simulated by Deform and compared with the experimental results of hot rolling to verify the accuracy of the finite element model. In addition, the influences of rolling speed on the rolled sheet temperature, rolling force and final sheet thickness during the hot rolling process were studied. The results show that with the increasing of rolling speed, the surface temperature and core temperature of rolled sheet increase, while the rolling force and the final sheet thickness decrease.

基金项目:
能源局核能重大专项(20192X06002001)
作者简介:
吴泽华(1995-),男,硕士研究生 E-mail:1289306859@qq.com 通信作者:邓偲瀛(1987-),女,博士,助理研究员 E-mail:sydeng@imr.ac.cn
参考文献:

 [1]王旭峰, 李中奎,周军,等. 锆合金在核工业中的应用及研究进展[J]. 热加工工艺,201241(2)71-74.


 


Wang X F, Li Z K, Zhou J, et al. Application and research progress of zirconium alloy in nuclear industry[J]. Hot Working Technology, 2012, 41(2): 71-74.


 


[2]Zou D, Luan B, Xiao D. Influences of strain rate on the plastic deformation mechanism of zirconium alloy[J]. Rare Metal Materials & Engineering, 2014, 43(8): 1897-1901.


 


[3]Murty K L, Charit I. Texture development and anisotropic deformation of zircaloys[J]. Progress in Nuclear Energy, 2006, 48(4): 325-359.


 


[4]董艺伟. Zr92Ti8合金热变形行为的研究[D]. 秦皇岛:燕山大学,2018.


 


Dong Y W. Study on Hot Deformation Behavior of Zr92Ti8 Alloy[D]. Qinhuangdao: Yanshan University, 2018.


 


[5]Saxena K K, Jha S K, Pancholi V, et al. Role of activation energies of individual phases in twophase range on constitutive equation of Zr2.5Nb0.5Cu alloy[J]. Transactions of Nonferrous Metals Society of China, 2017, 27(1): 172-183.


 


[6]白海龙, 严继康,刘宝权,等. 基于Deform的热轧3003铝板带温度场的三维有限元模拟[J]. 热加工工艺,201544(3)115-122.


 


Bai H L, Yan J K, Liu B Q, et al. Threedimensional finite element simulation of temperature field of hot rolled 3003 aluminum strip based on Deform[J]. Hot Working Technology, 2015, 44(3): 115-122.


 


[7]杨德辉, 赵松涛,陶华. 基于DeformAZ31镁合金板材挤压工艺的有限元模拟[J]. 热加工工艺,201544(13)157-162.


 


Yang D H, Zhao S T, Tao H. Finite element simulation of extrusion process of AZ31 magnesium alloy sheet based on Deform [J]. Hot Working Technology, 2015, 44(13): 157-162.


 


[8]Riahifar R, Serajzadeh S. Threedimensional model for hot rolling of aluminum alloys[J]. Materials & Design, 2007, 28(8): 2366-2372.


 


[9]陈灵, 谭自盟,段亚菲,等. 接触传热对7075铝合金热轧影响的数值模拟[J]. 模具工业,201743(7)25-29.


 


Chen L, Tan Z M, Duan Y F, et al. Numerical simulation of the effect of contact heat transfer on hot rolling of 7075 aluminum alloy[J]. Mold Industry, 2017. 43(7): 25-29.


 


[10]陶琳, 程明,张伟红,等. Inconel 625合金高温高速热变形行为[J]. 材料热处理学报,201233(9)55-59.


 


Tao L, Cheng M, Zhang W H, et al. Hot deformation behavior of Inconel 625 alloy at high temperature and high speed[J]. Journal of Material Heat Treatment, 2012, 33(9): 55-59.


 


[11]张伟红, 张士宏. NiTi合金热压缩实验数据的修正及其本构方程[J]. 金属学报,200642(10)1036-1040.


 


Zhang W H, Zhang S H. Modification of experimental data and constitutive equation of NiTi alloy under hot compression[J]. Acta Metallurgica Sinica, 2006, 42(10): 1036-1040.


 


[12]Laasraoui A, Jonas J J. Prediction of steel flow stresses at high temperatures and strain rates[J]. Metallurgical Transactions A, 1991, 22(7): 1545-1558.


 


[13]Mataya M C, Sackschewsky V E. Effect of internal heating during hot compression on the stressstrain behavior of alloy 304L[J]. Metallurgical & Materials Transactions A, 1994, 25(12): 2737-2752.


 


[14]Devadas C, Baragar D, Ruddle G, et al. The thermal and metallurgical state of steel strip during hot rolling: Part II. Factors influencing rolling loads[J]. Metallurgical Transactions A, 1991, 22(2): 321-333.


 


[15]刘文义. 7085铝合金热加工力学行为及微观组织演变规律研究[D]. 重庆:重庆大学,2014.


 


Liu W Y. Study on Hot Working Mechanical Behavior and Microstructure Evolution of 7085 Aluminum Alloy[D]. Chongqing: Chongqing University, 2014.


 


[16]孙国强, 刘勇,田保红,等. Cu0.8Mg0.15Ce合金热变形行为与机制研究[J]. 中国稀土学报,201937(1)76-83.


 


Sun G Q, Liu Y, Tian B H, et al. Study on hot deformation behavior and mechanism of Cu0.8Mg0.15Ce alloy[J]. Chinese Journal of Rare Earths, 2019, 37(1): 76-83.


 


[17]Sellars C M, McTegart W J. On the mechanism of hot deformation[J]. Acta Metallurgica, 1966, 14(9): 1136-1138.


 


[18]Xiao Y H, Guo C, Guo X Y. Constitutive modeling of hot deformation behavior of H62 brass[J]. Materials Science and Engineering A, 2011, 528(21): 6510-6518.


 


[19]Medina S F, Hernandez C A. General expression of the ZenerHollomon parameter as a function of the chemical composition of low alloy and microalloyed steels[J]. Acta Materialia, 1996, 44(1): 137-148.


 


[20]杜辉. 带钢在轧制过程中厚度变化规律的探究[J]. 科技致富向导,2011(14)137-140.


 


Du H. Investigation on the law of thickness variation of strip steel during rolling[J]. Keji Zhifu Xiangdao, 2011(14): 137-140.


 


[21]曹光明, 孙彬,邹颖,等. 板带热连轧过程氧化铁皮厚度变化的数值模拟[J]. 钢铁研究学报,201022(8)13-16.


 


Cao G M, Sun B, Zou Y, et al. Numerical simulation of thickness change of raw iron terminated iron terminal[J]. Journal of Iron and Steel Research, 2010, 22(8): 13-16.

服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管 北京机电研究所有限公司 中国机械工程学会塑性工程分会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9