网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
基于响应面法和修正Archard磨损理论的汽车前下摆臂 热锻模具应力与磨损分析
英文标题:Stress and wear analysis on hot forging mold for automobile front lower swing arm based on response surface method and modified Archard wear theory
作者:殷剑1 黎诚2 金康1  2 董奇3 
单位:1. 北京机电研究所有限公司 2. 中机精密成形产业技术研究院(安徽)股份有限公司 3.合肥学院 先进制造工程学院 
关键词:汽车前下摆臂 模具磨损 模具应力 响应面法 热锻模具 
分类号:TG376.2
出版年,卷(期):页码:2022,47(6):231-238
摘要:

 以汽车前下摆臂热锻模具作为研究对象,基于Archard修正磨损模型,采用模具预热温度、模具下压速度、模具初始硬度和摩擦因数4因素正交试验,建立了可信度较高的回归模型,进行了模具磨损和应力的预测与优化。通过响应面法求解出的最佳参数组合为:模具下压速度为78.80 mm·s-1、模具预热温度为206.72 ℃、摩擦因数为0.34和模具初始硬度为52.76 HRC,此时模具的磨损深度为3.75×10-6 mm、模具应力为672 MPa。将实际值与预测值拟合后发现,预测值与实际值具有较好的一致性,回归模型的真实性较高。通过试验验证得到模具单次磨损深度为3.875×10-6 mm,与响应面模拟结果的误差小于5%,验证了响应面模型的准确性。

  For the hot forging mold of front lower swing arm for automobile, based on Archard modified wear model, a model with high confidence regression was developed by the four-factor orthogonal test of preheating temperature, loading speed and initial hardness of mold as well as friction factor, and the prediction and optimization of mold wear and stress were conducted. Then, the optimal parameters combination obtained by response surface method was the loading speed of mold of 78.80 mm·s-1, the preheating temperature of mold of 206.72 , the friction factor of 0.34 and the initial hardness of mold of 52.76 HRC, then the wear depth of mold is 3.75×10-6 mm and the mold stress is 672 MPa. After fitting the actual values and the predicted values, it is found that the predicted values and the actual values are in good consistency, and the authenticity of regression model is high.It is verified that the single wear depth of mold is 3.875×10-6 mm, and the error with the response surface simulation result is less than 5%, which verifies the accuracy of the response surface model.

基金项目:
福建省科技计划项目(2020H4019)
作者简介:
殷剑(1997-),男,硕士研究生 E-mail:a18726451924@163.com 通信作者:金康(1978-),男,硕士,高级工程师 E-mail:jinkang@cmipf.com
参考文献:

 [1]张帅帅, 张彦敏,韩文奎,.基于响应曲面法的QCr0.5铜合金热挤压冲头磨损数值分析[J].塑性工程学报,2021,28(9):80-85.


 


Zhang S S, Zhang Y M, Han W K, et al. Numerical analysis of punch wear of QCr0.5 copper alloy in hot extrusion based on response surface method[J]. Journal of Plasticity Engineering, 2021,28(9):80-85.


 


[2]刘奕辰, 崔新生.基于飞轮储能的独立光伏发电系统设计[J].信息技术,2018,42(8):82-86.


 


Liu Y C, Cui X S. Standalone photovoltaic power system design based on flywheel energy storage technology[J]. Information Technology, 2018, 42(8): 82-86.


 


[3]张静, 郭竞宇,梁颖,.基于响应面法的单座阀阀杆预锻工艺优化[J].轻工机械,2017,35(5):65-69.


 


Zhang J, Guo J Y, Liang Y, et al. Optimization of single seat valve stem pre forging process based on response surface method[J]. Light Industry Machinery, 2017,35(5):65-69.


 


[4]苏红涛. 直齿圆锥齿轮振动摆辗成形技术研究[D]. 赣州:江西理工大学,2010.


 


Su H T. Research on Vibration Oscillating Forging Technology of Spur Bevel Gears[D]. Ganzhou: Jiangxi University of Science and Technology, 2010.


 


[5]谢晖, 凌鸿伟.基于Archard理论的热冲压模具磨损分析及优化[J].热加工工艺,2016,45(1):100-104.


 


Xie H, Ling H W. Analysis and optimization of hot stamping die wear based on Archard theory[J]. Hot Working Technology, 2016,45(1):100-104.


 


 


[6]陈少华, 张杨,谢伟,.铝型材挤压模具失效分析[J].失效分析与预防,2021,16(6):402-407.


 


Chen S H, Zhang Y, Xie W, et al. Failure analysis of aluminum profile extrusion mould[J]. Failure Analysis and Prevention, 2021,16(6):402-407.


 


[7]黄南乡. H13挤压模具失效分析[J].南方金属,2020(6):20-2336.


 


Huang N X. Failure analysis of extrusion die H13[J]. Southern Metals, 2020(6):20-2336.


 


[8]白植雄, 郑铭达,王宇斌,.4Cr5Mo2V钢曲轴热锻模具失效分析[J].金属热处理,2019,44(1):214-218.


 


Bai Z X, Zheng M D, Wang Y B, et al. Failure analysis of a crankshaft hot forging die of 4Cr5Mo2V steel[J]. Heat Treatment of Metals, 2019,44(1):214-218.


 


[9]杨晓俊, 朱兴龙.基于修正Archard磨损理论非标销轴温镦成形模具磨损研究[J].锻压技术,2021,46(11):32-37.


 


Yang X J, Zhu X L. Study on wear of warm upsetting mold for nonstandard pin shaft based on revised Archard wear theory[J]. Forging & Stamping Technology, 2021,46(11):32-37.


 


[10]刘洋,李峰光,刘建永,.基于CAE分析的热锻模具磨损部位预测及验证[J].湖北汽车工业学院学报,2021,35(2):58-6369.


 


Liu Y, Li F G, Liu J Y, et al. Prediction and verification of hot forging die wear based on CAE analysis[J]. Journal of Hubei University of Automotive Technology, 2021,35(2):58-6369.


 


[11]张东民,吕雷雷,朱景秋,.锁紧座冷成形模具磨损分析与参数优化[J].热加工工艺,2020,49(7):119-122.


 


Zhang D M, Lv L L, Zhu J Q, et al. Wear analysis and process parameter optimization of punching of riveting sleeve[J]. Hot Working Technology,2020,49(7):119-122.


 


[12]蔡力钢,刘海东,程强,.基于正交试验法的模锻模具磨损分析及优化[J].北京工业大学学报,2020,46(1):1-9.


 


Cai L G, Liu H D, Cheng Q, et al. Analysis and optimization of die forging wear based on orthogonal test method[J]. Journal of Beijing University of Technology, 2020,46(1):1-9.


 


[13]惠志全, 黄思,黄家兴,.基于EDEMFluent耦合的喷砂机磨损计算[J].武汉大学学报:工学版,2020,53(9):825-830.


 


Hui Z Q, Huang S, Huang J X, et al. Wear calculation of sandblasting machine based on EDEMFluent coupling[J]. Engineering Journal of Wuhan University, 2020, 53(9):825-830.


 


[14]龚小涛. 汽车半轴摆辗工艺设计及模具失效分析[J].热加工工艺,2015,44(1):159-160164.


 


Gong X T. Swing forging process design and die failure analysis of auto semiaxle[J]. Hot Working Technology, 2015,44(1):159-160164.


 


[15]Lee R S, Jou J L. Application of numerical simulation for wear analysis of warm forging die[J]. Journal of Materials Processing Technology, 2003, 140(1-3):43-48.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9