网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
基于响应面法与灰狼优化算法的壳体拉深成形模具优化设计
英文标题:Optimization design on shell deep drawing die based on response surface methodology and grey wolf optimization algorithm
作者:胡开元1 王雷刚2 
单位:1.成都理工工程技术学院 自动化工程系 2.江苏大学 材料科学与工程学院 
关键词:壳体 拉深成形 模具优化 响应面法 灰狼优化算法 
分类号:TG389
出版年,卷(期):页码:2022,47(6):244-250
摘要:

 为解决壳体拉深成形模具优化设计的实际问题,提出一种基于响应面法和灰狼优化算法的优化凹模尺寸参数的优化方法。以模口圆角半径Ra、中间带直径Dm、入模角α和定径带宽度B为设计变量,采用中心复合设计进行实验安排,以壳体的外径、高度、中心底厚及口部不平整度作为优化指标,并联合运用灰色关联分析法和熵权法,构建设计变量与优化指标之间的响应面模型,最后借助灰狼优化算法对预测模型进行寻优。最优凹模尺寸参数组合为:Ra=12 mmDm=Φ19.3 mm,α=20°和B=1.4 mm。采用优化后的凹模尺寸参数进行模拟验证和工艺实验,结果显示壳体所有尺寸指标均满足设计要求。

 n order to solve the practical problem of optimization design for deep drawing die for shell, a optimization method was proposed to optimize the size parameters of die based on response surface methodology and grey wolf optimization algorithm. Then, taking die fillet radius Ra, diameter of intermediate zon Dm, angle α entering the die and width B with constant diameter as the design variables, the experimental arrangement was conducted by central composite design, and taking outer diameter, height, center bottom thickness and mouth roughness of shell as the optimization indexes, the response surface models between design variables and optimization indexes was constructed by combining grey relational analysis method and entropy weight method. Furthermore, the prediction model was optimized by gray wolf optimization algorithm, and the optimal combination of die size parameters were Ra=12 mmDm=Φ19.3 mm,α=20° and B=1.4 mm. Finally, the optimal die size parameters were verified by numerical simulation and process test. The results show that all the size indexes of shell meet the design requirements.

基金项目:
2021年乐山市重点科技研究项目(21GZD007)
作者简介:
胡开元(1983-),男,硕士,讲师 E-mail:626489509@qq.com
参考文献:

 [1]胡冶昌, 魏志芳, 李晓光, 等. 基于NX高级仿真的弹壳冲盂工序数字化模型研究[J]. 塑性工程学报, 2017, 24(2): 122-127.


 

Hu Y C, Wei Z F, Li X G, et al. Digital model study on the cartridge case extrusion forming based on NX advanced simulation [J]. Journal of Plasticity Engineering, 2017, 24(2):122-127.

 

[2]李晓光, 魏志芳, 高建中, 等. 枪弹弹壳挤盂组合模新型设计与研究[J]. 兵工自动化, 2016, 35(2): 82-85.

 

Li X G, Wei Z F, Gao J Z, et al. New design and research of bullet casting extrusion combined die [J]. Ordnance Industry Automation, 2016, 35(2):82-85.

 

[3]Nejad S H, Hasanzadeh R, Doniavi A, et al. Finite element simulation analysis of laminated sheets in deep drawing process using response surface method[J]. The International Journal of Advanced Manufacturing Technology, 2017, 93(9-12): 3245-3259.

 

[4]Mrabti I E, Touache A, Hakimi A E, et al. Springback optimization of deep drawing process based on FEMANNPSO strategy [J]. Structural and Multidisciplinary Optimization, 2021, (1): 1-13.

 

[5]Feng Y X, Hong Z X, Gao Y C, et al. Optimization of variable blank holder force in deep drawing based on support vector regression model and trust region [J]. The International Journal of Advanced Manufacturing Technology, 2019, 105(1-3): 4265-4278.

 

[6]嵇友迪, 龚红英, 贾星鹏, 等. 基于响应面与遗传算法的汽车油箱托盘仿真优化[J]. 塑性工程学报, 2021, 28(12): 29-35.

 

Ji Y D, Gong H Y, Jia X P, et al. Simulation and optimization of automobile fuel tank tray based on response surface and genetic algorithm [J]. Journal of Plasticity Engineering, 2021, 28(12): 29-35.

 

[7]赵小云, 龚红英, 施为钟, 等. 基于RSM与NSGAⅡ的燃气灶外壳零件成形质量多目标优化[J]. 轻工机械, 2021, 39(1): 86-91.

 

Zhao X Y, Gong H Y, Shi W Z, et al. Multiobjective optimization of forming quality of gas stove shell parts based on RSM and NSGAⅡ [J]. Light Industry Machinery, 2021, 39(1): 86-91.

 

[8]施为钟, 龚红英, 姜天亮, 等. 基于Dynaform和响应面法的带凸缘圆筒件拉深工艺优化[J]. 上海工程技术大学学报, 2020, 34(2): 168-173.

 

Shi W Z, Gong H Y, Jiang T L, et al. Drawing process optimization of cylinder with flange based on Dynaform and response surface method [J]. Journal of Shanghai University of Engineering Science, 2020, 34(2): 168-173.

 

[9]周杰, 罗艳, 王珣, 等. 汽车内板件冲压成形工艺参数多目标优化[J]. 兵器材料科学与工程, 2015, 38(2): 15-17:

 

Zhou J, Luo Y, Wang X, et al. Multiobjective optimization of stamping forming process of automobile inner panel [J]. Ordnance Material Science and Engineering, 2015, 38(2): 15-17.

 

[10]周杰, 罗艳, 王珣, 等. 基于响应面的封头冲压成形工艺多目标优化[J]. 吉林大学学报:工学版, 2016, 46(1): 205-212.

 

Zhou J, Luo Y, Wang X, et al. Multiobjective optimization of stamping forming process of head based on response surface model [J]. Journal of Jilin University:Engineering and Technology Edition, 2016, 46(1): 205-212.

 

[11]洪旗, 史耀耀, 路丹妮, 等. 基于灰色关联分析和响应面法的复合材料缠绕成型多目标工艺参数优化[J]. 复合材料学报, 2019, 36(12): 2822-2832.

 

Hong Q, Shi Y Y, Lu D N, et al. Multiresponse parameter optimization for the composite tape winding process based on grey relational analysis and response surface methodology [J]. Acta Materiae Compositae Sinica, 2019, 36(12): 2822-2832.

 

[12]梁强, 周杰, 何雄, 等. 载重汽车用直齿轮冷挤压工艺参数多目标优化[J]. 中南大学学报:自然科学版, 2017, 48(12): 3216-3223.

 

Liang Q, Zhou J, He X, et al. Multiobjective optimization of cold extrusion process parameters for spur gear of camion [J]. Journal of Central South University:Science and Technology, 2017, 48(12): 3216-3223.

 

[13]付向辉, 张立刚, 李立, 等. 电絮凝除铊工艺的响应曲面优化[J]. 稀有金属, 2020, 44(5): 530-539.

 

Fu X H, Zhang L G, Li L, et al. Optimization of electrocoagulation process for thallium removal from aqueous solutions by response surface methodology[J]. Chinese Journal of Rare Metals,2020, 44(5): 530-539.

 

[14]Mirjalili S, Mirjalili S M, Lewis A. Grey wolf optimizer [J]. Advances in Engineering Software, 2014, 69(3): 46-61.

 
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9