[1]张学忠, 刘健生,何文武,等. 12%Cr超超临界转子钢热变形行为及高温塑性本构方程[J]. 锻压技术, 2020,45(8): 184-189.
Zhang X Z,Liu J S,He W W, et al. Hot deformation behavior and high temperature plastic constitutive equation for 12%Cr ultra-supercritical rotor steel[J]. Forging & Stamping Technology, 2020,45(8): 184-189.
[2]熊林敞, 田仲良. 超超临界汽轮机转子用耐热钢研究进展[J]. 上海金属, 2018,40(1): 90-94.
Xiong L C,Tian Z L. Development of heat-resistant steels used for ultra-supercritical steam turbine rotor[J].Shanghai Metals, 2018,40(1): 90-94.
[3]潘秀兰, 王艳兰,梁慧智.国内外电渣重熔技术的发展与展望[J].鞍钢技术,2005,(2):5-10.
Pan X L, Wang Y L, Liang H Z. Development and prospect of electroslag remelting technology at home and abroad[J]. Angang Technology,2005,(2):5-10.
[4]庞庆, 彭建强.625 ℃等级超超临界汽轮机高中压转子材料研究[J]. 汽轮机技术,2014,56(1):75-77.
Pang Q, Peng J Q. Study on high & intermediate pressure rotor for ultra-super critical steam turbine operating at 625 ℃[J]. Turbine Technology,2014,56(1):75-77.
[5]Semba H, Abe F. Creep deformation behavior and microstructure in high boron containing 9% Cr ferritic heat-resistant steels [A]. Advances in Materials Technology Proceedings from the 4th International Conference [C]. Hilton Head Island, USA, 2004.
[6]梅林波, 沈红卫,王思玉,等. 625 ℃汽轮机转子材料的开发及性能分析[J].热力透平, 2012, 41(3): 184-187.
Mei L B, Shen H W, Wang S Y, et al. Development and property analysis of rotor material for 625 ℃ steam turbines[J]. Thermal Turbine, 2012, 41(3): 184-187.
[7]赵吉庆, 杨钢, 赵林,等. 高性能9%~12%Cr转子钢发展现状及锻件国产化概况[J].汽轮机技术,2021,63(1):71-76.
Zhao J Q, Yang G, Zhao L, et al. Developing of high-performance 9%-12%Cr rotor steels and localization overview of forging used for steam turbine rotors[J].Turbine Technology, 2021,63(1):71-76.
[8]李克俭, 蔡志鹏,吴瑶,等. FB2 马氏体耐热钢在焊接热作用下奥氏体相变过程研究[J].金属学报,2017,53(7):778-788.
Li K J, Cai Z P, Wu Y, et al. Research on austenite transformation of FB2 heat-resistant steel during welding heating process[J]. Acta Metallurgica Sinica, 2017,53(7):778-788.
[9]田晓, 秦承鹏,徐慧,等.620 ℃汽轮机用FB2转子钢高温时效过程的组织与性能演变[J].中国电机工程学报,2021,41(9):3232-3240.
Tian X, Qin C P, Xu H, et al. Microstructure and mechanical properties evolution of FB2 steel used for 620 ℃ steam-turbine during high temperature long-term aging[J]. Proceedings of the CSEE,2021, 41(9):3232-3240.
[10]罗国华, 张帆,范植金,等.含硼氮中碳铝镇定钢中BN夹杂析出热力学分析[J]. 武汉科技大学学报,2014,37(6):406-410.
Luo G H, Zhang F, Fan Z J, et al. Thermodynamic analysis of BN inclusion precipitation in medium-carbon aluminum killed steel containing B and N[J]. Journal of Wuhan University of Science and Technology, 2014,37(6):406-410.
[11]周斌, 高振桓,李清松,等. 超超临界汽轮机转子FB2材料性能及蠕变组织演化规律研究[J].东方汽轮机, 2016, (1): 42-49.
Zhou B, Gao Z H, Li Q S, et al. Property and microstructural evolution of FB2 used for rotor of ultra-supercritical steam turbine [J]. Dongfang Tubine, 2016, (1): 42-49.
[12]Gianfrancesco A D, Cipolla L, Venditti D. High temperature properties and creep behavior of a CrMoCoB (FB2) steel trial rotor[A]. 17th International Forgemasters Meeting[C]. Santander,Spain:AFID Congresos,2008.
[13]Kern T-U, Scarlin B, Donth B. The european COST536 project for the development of new high temperature rotor materials[A]. 17th International Forgemasters Meeting[C]. Santander:AFID Congresos,2008.
[14]Gianfrancesco A D, Cipolla L, Venditti D, et al. The role of boronin long term stability of a CrMoCoB (FB2) steel for rotor application[A]. Advances in Materials Technology Proceedings From the 6th International Conference[C].New Mexico, 2010.
[15]GB/T 10561—2005, 钢中非金属夹杂物含量的测定标准评级图显微检验法[S].
GB/T 10561—2005, Steel—Determination of content of nonmetallic inclusions—Micrographic method using standards diagrams[S].
|