[1]王艳艳, 高崇阳.车辆底板冲压的响应面拟合与改进蜂群算法优化[J].锻压技术,2021,46(3):89-95.
Wang Y Y, Gao C Y. Response surface fitting and improved bee colony algorithm optimization for vehicle bottom plate in stamping [J]. Forging & Stamping Technology, 2021, 46(3):89-95.
[2]么大锁. 汽车引擎盖外板拉延成形工艺参数优化研究[J].机电工程,2020,37(7):795-800.
Yao D S. Optimization of drawing process parameters for automobile engine hood outer plate [J]. Journal of Mechanical & Electrical Engineering, 2020, 37(7):795-800.
[3]韦韡, 姚佐平,李开文,等. 基于Autoform的汽车侧围回弹补偿分析[J].精密成形工程,2021,13(3):172-178.
Wei W, Yao Z P, Li K W, et al. Analysis on compensation for spring back of auto-bodyside based on Autoform [J]. Journal of Netshape Forming Engineering, 2021, 13(3):172-178.
[4]刘强, 俞国燕,梅端. 基于Dynaform与RBF-NSGA-II算法的冲压成形工艺参数多目标优化[J].塑性工程学报,2020,27(3):16-25.
Liu Q, Yu G Y, Mei D. Multi-objective optimization of stamping forming process parameters based on Dynaform and RBF-NSGA-II algorithm [J]. Journal of Plasticity Engineering, 2020, 27(3):16-25.
[5]蒋磊, 龚剑,王龙,等. 侧围外板浅拉延成形工艺数值模拟[J].塑性工程学报,2020,27(9):73-81.
Jiang L, Gong J, Wang L, et al. Numerical simulation of shallow drawing for body side outer panel [J]. Journal of Plasticity Engineering, 2020, 27(9):73-81.
[6]胡锦达. 汽车后围内板冲压工艺的高斯扰动粒子群优化[J].锻压技术,2020,45(12):46-52.
Hu J D. Stamping process optimization of automobile rear inner panel based on Gaussian perturbation particle swarm [J]. Forging & Stamping Technology, 2020, 45(12):46-52.
[7]夏明勇. 汽车用6016铝合金板材预时效工艺研究及冲压成形数值模拟[D]. 重庆:重庆大学,2018.
Xia M Y. Study on Pre-aging Technology and Numerical Simulation of Stamping Forming of 6016 Aluminum Alloy Sheet for Automobile [D]. Chongqing: Chongqing University, 2018.
[8]刘文辉, 罗号, 谭永胜, 等. 横轧对6016铝合金组织及力学性能的影响[J].稀有金属,2020,44(3):242-248.
Liu W H, Luo H, Tan Y S, et al. Effects of cross-rolling on microstructure and mechanical properties of 6016 Aluminum alloy[J]. Chinese Journal of Rare Metals,2020,44(3):242-248.
[9]孙晓东, 刘健,陈雅琪,等.往复式压缩机轴系扭振参数优化设计[J].机械设计与制造,2019,(5):171-174.
Sun X D, Liu J, Chen Y Q, et al. Optimization design of reciprocating compressor shafting torsional vibration parameters [J]. Machinery Design & Manufacture, 2019, (5): 171-174.
[10]Hecht-Nielsen R. Neurocomputer Applications[M]. New York:Springer-Verlag New York Inc., 1989.
[11]Sun C. Creep deformation constitutive model of BSTMUF601 superalloy using the BP neural network method[J]. Rare Metal Materials and Engineering, 2020, 49(6):1885-1893.
[12]郑夏, 马良. 一种多目标非线性优化的NSGA-II改进算法[J].微电子学与计算机,2020,37(7):47-53.
Zheng X, Ma L. An improved NSGA-II algorithm for multi-objective nonlinear optimization [J]. Microelectronics & Computer,2020, 37(7):47-53.
[13]顾清华, 莫明慧,卢才武,等. 求解约束高维多目标问题的分解约束支配NSGA-Ⅱ优化算法[J].控制与决策,2020,35(10):2466-2474.
Gu Q H, Mo M H, Lu C W, et al. Decomposition-based constrained dominance principle NSGA-II for constrained many-objective optimization problems [J]. Control and Decision, 2020, 35(10):2466-2474.
|