网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
下板厚度对钢/铝自冲铆接接头单搭剪切强度的影响
英文标题:Influence of lower plate thickness on single lap shear strength of joint in steel and aluminum self-piercing riveting
作者:廖品翔 林建平 闵峻英 戚成威 
单位:同济大学 
关键词:自冲铆接 异种材料 单搭剪切强度 厚度 接头 
分类号:TG115.2
出版年,卷(期):页码:2022,47(7):145-153
摘要:

 以CR590钢/AA6022-T4铝合金以及CR590钢/S-6000-IH铝合金单搭剪切接头作为实验对象,借助有限元仿真研究了下板厚度对钢/铝自冲铆接接头单搭剪切强度的影响规律。分别建立了2D自冲铆接过程以及3D自冲铆接接头单搭剪切的有限元仿真模型,并通过自冲铆接接头实验的失效模式与载荷-位移曲线验证了仿真的准确性。分析结果表明:当AA6022-T4铝合金下板与S-6000-IH铝合金下板的厚度由1.2 mm增加至3.0 mm时,SPR接头的单搭剪切强度开始由3.7与2.8 MPa增加至4.5与4.2 MPa,而后趋于稳定。并研究了不同铝合金下板厚度对SPR接头关键尺寸(底切量、剩余厚度和垂直互锁值)的影响,进而揭示了下板厚度对SPR接头单搭剪切强度的影响机理,发现:对于两种SPR接头,接头剩余厚度均随着下板厚度的增加而线性增大,但该尺寸不影响铆钉的锁合性能;而底切量随下板厚度的增大保持在0.5 mm不变;垂直互锁值则随着下板厚度的增加先线性增加,当下板厚度大于2.0 mm时则基本保持不变,对于S-6000-IH铝合金下板以及AA6022-T4铝合金下板,其饱和值分别为1.2以及1.0 mm,因此导致铆钉与工件材料的锁合程度随下板厚度的增大先增大后保持不变,使接头单搭剪切强度也同样呈这一变化规律。

 For single lap shear joints of CR590 steel/AA6022-T4 aluminum alloy and CR590 steel/S-6000-IH aluminum alloy, the influence laws of the lower plate thickness on the single lap shear strength in steel and aluminum self-piercing riveting (SPR) joint was studied by finite element simulation. Then, finite element simulation models of the 2D self-piercing riveting process and the single lap shear strength of 3D self-piercing riveting joint were established respectively, and the accuracy of simulation was verified by the failure mode and the load-displacement curve through the self-priercing riveting joint experiment. The results show that when the thicknesses of lower plates with AA6022-T4 aluminum alloy and S-6000-IH aluminum alloy increase from 1.2 to 3.0 mm, the shear strengths of SPR joint increase from 3.7 and 2.8 MPa to 4.5 and 4.2 MPa, and then tend to be stable. Furthermore, the influences of the thicknesses of lower plates for different aluminum alloys on the key dimensions of SPR joint (undercut amount, residual thickness and vertical interlock value) were studied, and the influence mechanism of the lower plate thickness on the single lap shear strength of SPR joint was revealed. It is found that for the two SPR joints, the residual thickness of joint increases linearly with the increasing of the lower plate thickness, but this dimension does not affect the locking performance of the rivet. However, the undercut amount remains 0.5 mm with the increasing of the lower plate thickness, and the vertical interlock value increases linearly with the increasing of the lower plate thickness. When the thickness is larger than 2.0 mm, the vertical interlock value remains basically unchanged. For S-6000-IH and AA6022-T4 aluminum alloy lower plates, their saturation values are 1.2 and 1.0 mm respectively. Thus, the locking degree of the rivet and workpiece material increases first and then remains unchanged with the increasing of the lower plate thickness, so that the single lap shear strength of joint also exhibits this change law.

基金项目:
作者简介:
作者简介:廖品翔(1997-),男,硕士研究生 E-mail:liaopx3008@163.com 通信作者:林建平(1958-),男,博士,教授 E-mail:jplin58@tongji.edu.cn
参考文献:

 [1]李永兵, 李亚庭,楼铭,等.轿车车身轻量化及其对连接技术的挑战[J].机械工程学报,2012,48(18):44-54.


Li Y B, Li Y T, Lou M, et al. Lightweighting of car body and its challenges to joining technologies[J]. Chinese Jounal of Mechanical Engineering, 2012, 48(12): 44-54.

[2]李永兵, 马运五,楼铭,等.轻量化多材料汽车车身连接技术进展[J].机械工程学报,2016,52(24):1-23.

Li Y B, Ma Y W, Lou M, et al. Advances in welding and joining processes of multi-material lightweight car body[J]. Chinese Journal of Mechanical Engineering, 2016, 52(24): 1-23.

[3]Mori K, Kato T, Abe Y, et al. Plastic joining of ultra-high strength steel and aluminum alloy sheets by self-piercing rivet[J]. CIRP Annals, 2006, 55(1): 283-286.

[4]Martinsen K, Hu S J, Carlson B E. Joining of dissimilar materials[J]. CIRP Annals, 2015, 64(2): 679-699.

[5]张永超, 黄志超,贾颖莲.B1500HS高强度钢与AA5052铝合金自冲铆接成形与力学性能分析[J].塑性工程学报,2021,28(10):122-129.

Zhang Y C, Huang Z C, Jia Y L. Forming and mechanical properties analysis of self-piercing riveted joints of B1500HS high strength steel and AA5052 aluminum alloy[J]. Journal of Plasticity Engineering, 2021, 28(10):122-129.

[6]Li D, Chrysanthou A, Patel I, et al. Self-piercing riveting-A review[J]. The International Journal of Advanced Manufacturing Technology, 2017, 92(5): 1777-1824.

[7]Li D Z, Han L, Shergold M, et al. Influence of rivet tip geometry on the joint quality and mechanical strengths of self-piercing riveted aluminum joints[J]. Materials Science Forum, 2013, 765:746-750.

[8]Mucha J. Some aspects of designing process self-piercing riveting[J]. Archives of Mechanical Technology and Automation, 2009, 29(4): 91-101.

[9]Li D Z, Han L, Chrysanthou A, et al. The effect of setting velocity on the static and fatigue strengths of self-piercing riveted joints for automotive applications[A]. TMS 2014: 143rd Annual Meeting & Exhibition[C]. Cham:Springer, 2014.

[10]Abe Y, Kato T, Mori K. Self-piercing riveting of high tensile strength steel and aluminum alloy sheets using conventional rivet and die[J]. Journal of Materials Processing Technology, 2009, 209(8):3914-3922. 

[11]Stephens E V. Mechanical Strength of Self-piercing Riveting (SPR) [M]. Cambridge: Woodhead Publishing, 2014.

[12]金鑫. 铝钢异种金属自冲铆接工艺仿真优化研究[D].上海:上海交通大学,2012.

Jin X. Research on the Simulation and Optimization of Self-piercing Riveting Process for Dissimilar Materials [D]. Shanghai: Shanghai Jiao Tong University, 2012.

[13]Li D Z, Han L, Thornton M, et al. An evaluation of quality and performance of self-piercing riveted high strength aluminum alloy AA6008 for automotive applications[A].SAE World Congress[C]. Detroit, 2010.

[14]Zhang C Y, Gou R B, Yu M, et al. Mechanical and fatigue properties of self-piercing riveted joints in high-strength steel and aluminum alloy[J]. Journal of Iron and Steel Research, International, 2017, 24(2):214-221.

[15]Cacko R. Review of different material separation criteria in numerical modeling of the self-piercing riveting process-SPR[J]. Archives of Civil and Mechanical Engineering, 2008, 8(2):21-30.

[16]Porcaro R, Langseth M, Weyer S, et al. An experimental and numerical investigation on self-piercing riveting[J]. International Journal of Material Forming, 2008, 1(S1):1307-1310.

[17]Moraes J F C, Jordon J B, Su X, et al. Effect of process deformation history on mechanical performance of AM60B to AA6082 self-pierce riveted joints[J]. Engineering Fracture Mechanics, 2019, 209:92-104.

[18]Hollomon J H. Tensile deformation[J]. Metals Technology,1945, 12(4): 268-290.

[19]Johnson G R, Cook W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures[J]. Engineering Fracture Mechanics, 1985, 21(1): 31-48.

[20]Hockett J E, Sherby O D. Large strain deformation of polycrystalline metals at low homologous temperatures[J]. Journal of the Mechanics and Physics of Solids, 1975, 23(2): 87-98.

[21]Lin J, Qi C, Wan H, et al. Prediction of cross-tension strength of self-piercing riveted joints using finite element simulation and XGBoost algorithm[J]. Chinese Journal of Mechanical Engineering, 2021, 34(1): 1-11.

[22]Carandente M, Dashwood R J, Masters I G, et al. Improvements in numerical simulation of the SPR process using a thermo-mechanical finite element analysis[J]. Journal of Materials Processing Technology, 2016, 236: 148-161.

[23]付飞翔. 钢铝自冲铆接数值模拟及底切量GA-BP神经网络预测研究[D]. 湘潭:湘潭大学,2020.

Fu F X. Numerical Simulation of Steel Aluminum Self Piercing Riveting and Prediction of Undercut based on GA-BP Neural Network [D]. Xiangtan:Xiangtan University, 2020.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9