网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
腐蚀及温度循环对6061铝合金力学性能的影响
英文标题:Influence of corrosion and temperature cycle on mechanical properties for 6061 aluminum alloy
作者:刘兵飞 罗雪航 
单位:中国民航大学 
关键词:6061铝合金 本构模型 腐蚀 温度循环 屈服强度 抗拉强度 
分类号:TG146.2
出版年,卷(期):页码:2022,47(7):243-252
摘要:

 为合理描述6061铝合金在腐蚀和温度循环下的应力流动行为,通过理论研究、实验测试和有限元仿真相结合的手段讨论了腐蚀及温度循环对6061铝合金力学性能的影响。实验研究结果表明:腐蚀和温度循环均可导致6061铝合金屈服强度和抗拉强度的降低;且腐蚀液浓度越高、温度循环次数越多,材料力学性能下降趋势越明显。通过不同腐蚀和温度循环条件下应力-应变曲线的对比,修正了Johnson-Cook本构模型并标定了各项系数,得到了考虑腐蚀和温度循环下的修正本构模型,且理论模型与实验测试及有限元结果吻合良好;进而基于该本构模型,讨论了腐蚀时间和腐蚀浓度和温度循环次数对6061铝合金力学性能的影响。

 In order to reasonably describe the stress flow behavior of 6061 aluminum alloy under corrosion and temperature cycling, the influences of corrosion and temperature cycling on the mechanical properties of 6061 aluminum alloy were discussed by the combination of theoretical research, experimental tests and finite element simulation. The experimental results show that both corrosion and temperature cycling can lead to the reduction of yield strength and tensile strength for 6061 aluminum alloy. The higher the concentration of corrosive solution is, the more the times of temperature cycles is, and the more obvious the downward trend of mechanical properties for the material is. By comparing the stress-strain curves under different corrosion and temperature cycling conditions, the Johnson-Cook constitutive model is revised and various coefficients are calibrated, and the revised constitutive model considering corrosion and temperature cycling is obtained. The theoretical model is in good agreement with the experimental tests and finite element results. Based on the constitutive model, the influences of corrosion time, corrosion concentration and temperature cycle on the mechanical properties of 6061 aluminum alloy are discussed.

基金项目:
国家自然科学基金资助项目(11502284);中科院重点部署项目(KFZD-SW-435);中央高校基本科研业务费(3122020077)
作者简介:
作者简介:刘兵飞(1985-),男,博士,副教授 E-mail:bingfeiliu2@126.com
参考文献:

 [1]El-aty A A, Ha S, Zhang S H, et al. Prediction of tensile deformation behavior of Al-Li alloy 2060-T8 by computational homogenization-based crystal plasticity finite element method[J].Journal of Physics: Conference Seriesr,2018,1063:1-6.


[2]Chen Y, Clausen A H, Hopperstad O S, et al. Stress-strain behaviour of aluminium alloys at a wide range of strain rates[J]. International Journal of Solids and Structures, 2009, 46(21):3825-3835.

[3]李慎兰, 黄志其,蒋福利,等.固溶温度对6061铝合金组织和性能的影响[J].材料热处理学报,2013,34(5): 131-136.

Li S L, Huang Z Q, Jiang F L, et al. Effect of solution temperature on microstructure and property of a 6061 aluminum alloy[J]. Transactions of Materials and Heat Treatment,2013,34(5):131-136.

[4]商宝川, 尹志民,段佳琦,等.6061挤压态铝合金的TTP曲线及其应用[J].热加工工艺,2011,40(14):17-19.

Shang B C, Yi Z M, Duan J Q, et al. TTP curve of 6061 extrusion aluminum alloy and its application[J]. Hot Working Technology, 2011, 40(14):17-19.

[5]Farshidi M H. Effect of aging treatment on the crushing behavior of aluminum 6061 alloy tube[J]. Journal of Materials: Design and Applications, 2015, 229(5):389-397.

[6]Sarapure S, Shivakumar B P, Hanamantraygouda M B. Investigation of corrosion behavior of SiC reinforced Al6061/SiC metal matrix composites using Taguchi technique[J]. Journal of Bio-and Tribo-Corrosion, 2020, 6(1-2):325-334.

[7]梁景恒, 郑自芹,杭平平,等.6A01铝合金焊接接头盐雾腐蚀行为研究[J].兵器材料科学与工程,2020,43(6):54-59.

Liang J H, Zheng Z Q, Hang P P, et al. Corrosion behavior of 6A01 aluminium alloy welding joint under salt spray test[J].Ordnance Material Science and Engineering, 2020, 43(6):54-59.

[8]林德源. 6082-T6铝合金在模拟沿海大气环境下的腐蚀行为和腐蚀机理[J].腐蚀科学与防护技术,2017,29(5):499-506.

Lin D Y. Corrosion behavior of Al-alloy 6082-T6 in simulated marine atmospheric environment[J]. Corrosion Science and Protection Technology, 2017, 29(5):499-506.

[9]Zheng C B, Chen X, Li C L, et al. The effect of heat treatment on corrosion resistance of 6061 aluminum alloy[J]. International Journal of Electrochemical Science, 2016, 11:7255.

[10]Rahi K D, Gupta P K. Effect of deformation on the mechanical and physical properties of aluminum alloy 6061[J].Journal of Scientific Research and Advances, 2016,3(4):358-366.

[11]刘宁, 马力,刘爱军,等.热处理对含钪6061铝合金组织和力学性能的影响[J].材料热处理学报,2020,41(8):8-17.

Liu N, Ma L, Liu A J, et al. Effect of heat treatment on microstructure and mechanical properties of 6061 aluminum alloy containing Sc[J].Transactions of Materials and Heat Treatment,2020,41(8):8-17.

[12]雷经发, 许孟,刘涛,等.高应变率下6061铝合金力学性能及本构模型研究[J].兵器材料科学与程,2019,42(1):75-78.

Lei J F, Xu M, Liu T, et al. Mechanical properties and constitutive model of 6061 aluminum alloy at high strain rate[J].Ordnance Material Science and Engineering,2019,42(1):75-78.

[13]盈亮, 戴明华,胡平,等.6061-T6铝合金高温本构模型及温成形数值模拟[J].中国有色金属学报,2015,25(7):1816-1821.

Ying L, Dai M H, Hu P, et al. Thermal constitutive model and numerical simulation of hot forming for 6061-T6 aluminum alloy[J]. The Chinese Journal of Nonferrous Metals, 2015, 25(7):1816-1821.

[14]Liu Y, Zhu Z J, Wang Z J, et al. Flow and friction behaviors of 6061 aluminum alloy at elevated temperatures and hot stamping of a B-pillar[J].The International Journal of Advanced Manufacturing Technology,2018,96:9-12.

[15]刘伟, 吴远志,邓彬,等.挤压态6061铝合金的力学性能及显微组织[J].金属热处理,2020,45(9):172-177.

Liu W, Wu Y Z, Deng B, et al. Mechanical properties and microstructure of extruded 6061 aluminum alloy[J].Heat Treatment of Metals,2020,45(9):172-177.

[16]邓云飞, 张永,吴华鹏,等.6061-T651铝合金动态力学性能J-C本构模型的修正[J].机械工程学报,2020,56(20):74-81.

Deng Y F,Zhang Y, Wu H P, et al. Dynamic mechanical properties and modification of J-C constitutive model of 6061-T651 aluminum alloy[J].Journal of Mechanical Engineering,2020,56(20):74-81.

[17]Gilioli A, Manes A, Giglio M, et al. Predicting ballistic impact failure of aluminium 6061-T6 with the rate-independent Bao-Wierzbicki fracture model[J].International Journal of Impact Engineering,2015,76:207-220.

[18]Derose J A, Suter T, Balkowiec A, et al. Localized corrosion initiation and microstructural characterization of an Al2024 with a higher Cu to Mg ratio[J].Corrosion Science,2012,55:313-325.

[19]Pidaparti R M, Aghazadeh B S.Degradation modeling of 2024 aluminum alloy during corrosion process[J].Journal of Materials Engineering and Performance,2011, 20(3):348-354.

[20]韩东锐, 韩冰,隋景堂,等.6061铝合金在高温流动海水中的腐蚀行为[J].装备环境工程,2011,8(3):1-4.

Han D R, Han B, Sui J T, et al. Corrosion behavior of 6061 aluminum alloy in high temperature flowing seawater[J]. Equipment Environmental Engineering,2011,8(3):1-4.

[21]刘晓云, 王文广,陈礼清,等.热循环对片层石墨/铝复合材料的强度和热导率的影响[J].复合材料学报,2021,38(4):1-8.

Liu X Y, Wang W G, Chen L Q, et al. Effect of thermal cycling treatment on the strength and thermal conductivity of graphite flakes/Al composites[J]. Acta Materiae Compositae Sinica,2021,38(4):1-8.

[22]Aylor D M, Moran P J. Pitting corrosion behavior of 6061 aluminum alloy foils in sea water[J].Journal of the Electrochemical Society, 2019, 133(5):949-951.

[23]Johnson G R, Cook W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[J]. Engineering Fracture Mechanics, 1983, 21:541-547.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9