网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
Mg-Gd-Y-Zn稀土镁合金中的位错滑移转移现象
英文标题:Dislocation slip transfer phenomenon for Mg-Gd-Y-Zn Mg-RE alloy
作者:马文昌 蒋少松 
单位:中国人民解放军海军装备部沈阳局驻哈尔滨地区第三军事代表室 哈尔滨工业大学 
关键词:稀土镁合金 位错 滑移转移 晶界取向差 Luster-Morris因子 
分类号:TG146.4
出版年,卷(期):页码:2022,47(7):253-260
摘要:

 通过原位拉伸对Mg-Gd-Y-Zn稀土镁合金中位错在相邻晶粒内的滑移转移现象进行了研究。使用Luster-Morris因子m′评估相邻两个晶粒内滑移系之间的几何关系。研究发现,Mg-Gd-Y-Zn稀土镁合金中裂纹更容易在硬取向和软取向晶粒的交界处形成。对实验结果进行统计分析后发现,位错滑移转移发生时,相邻晶粒滑移系的m′大于0.77。当晶界取向差小于34.2°时,发生基面位错-基面位错滑移转移现象;当晶界取向差大于48.8°时,发生基面位错-锥面位错滑移转移现象。此外,研究发现,m′与基面滑移系的Schmid因子相乘,可以定量地判断基面位错-基面位错的滑移转移现象,而对于基面位错-锥面位错的滑移转移现象,m′与Schmid因子相乘的方法并不适用。

 In Mg-Gd-Y-Zn Mg-RE alloy, the dislocations slip transfer phenomenon in adjacent grains was investigated by in-situ tension test, and the geometric relationship between the slip systems in two adjacent grains was evaluated by Luster-Morris factor m′. It is found that cracks in Mg-Gd-Y-Zn Mg-RE alloy are more likely to form at the junction of hard-oriented and soft-oriented grains. After the statistical analysis on the test results, it is found that when the dislocation slip transfer phenomenon occurs, m′ of the adjacent grain slip system should be larger than 0.77. When the grain boundary misorientation is less than 34.2°, the basal plane dislocation-basal plane dislocation slip transfer phenomenon occurs, whereas when the grain boundary misorientation is larger than 48.8°, the basal plane dislocation-cone dislocation slip transfer phenomenon  occurs. In addition, it is found that the multiplication of m′ and Schmid factor of the basal plane slip system can quantitatively determine the basal plane dislocation-basal plane dislocation slip transfer phenomenon. For the slip transfer phenomenon of basal plane dislocations-cone dislocations, the method of multiplying m′ factor by the Schmid factor is not applicable. 

基金项目:
国家自然科学基金资助项目(51775135,U1830119)
作者简介:
作者简介:马文昌(1973-),男,学士,高级工程师 E-mail:wchangma@126.com 通信作者:蒋少松(1978-),男,博士,研究员 E-mail:jiangshaosong@hit.edu.cn
参考文献:

 [1]Bieler T R, Eisenlohr P, Zhang C, et al. Grain boundaries and interfaces in slip transfer [J]. Current Opinion in Solid State and Materials Science, 2014, 18 (4): 212-226.


[2]Miller M P, Dawson P R. Understanding local deformation in metallic polycrystals using high energy X-rays and finite elements [J]. Current Opinion in Solid State and Materials Science, 2014, 18(5): 286-299. 

[3]Callister W D, Rethwisch D G. Materials Science and Engineering: An Introduction [M]. The Ninth Edition. Hoboken: John Wiley and Sons Incorporated, 2013.

[4]Starink M J. Dislocation versus grain boundary strengthening in SPD processed metals: Non-causal relation between grain size and strength of deformed polycrystals [J]. Materials Science and Engineering: A, 2017, 705: 42-45.

[5]Boehlert C, Chen Z, Gutiérrez-Urrutia I, et al. In situ analysis of the tensile and tensile-creep deformation mechanisms in rolled AZ31 [J]. Acta Materialia, 2012, 60(4): 1889-1904.

[6]Miura H, Maruoka T, Yang X, et al. Microstructure and mechanical properties of multi-directionally forged Mg-Al-Zn alloy [J]. Scripta Materialia, 2012, 66(1): 49-51.

[7]Salandari-Rabori A, Zarei-Hanzaki A, Fatemi S M, et al. Microstructure and superior mechanical properties of a multi-axially forged WE magnesium alloy [J]. Journal of Alloys and Compounds, 2017, 693: 406-413.

[8]Lee T C, Robertson I M, Birnbaum H K. An in situ transmission electron microscope deformation study of the slip transfer mechanisms in metals [J]. Metallurgical Transactions A, 1990, 21(9): 2437-2447. 

[9]King A, Ludwig W, Herbig M, et al. Three-dimensional in situ observations of short fatigue crack growth in magnesium [J]. Acta Materialia, 2011, 59(17): 6761-6971. 

[10]Bieler T R, Eisenlohr P, Roters F, et al. The role of heterogeneous deformation on damage nucleation at grain boundaries in single phase metals [J]. International Journal of Plasticity, 2009, 25(9): 1655-1683.

[11]Sangid M D, Ezaz T, Sehitoglu H. Energetics of residual dislocations associated with slip-twin and slip-GBs interactions [J]. Materials Science and Engineering: A, 2012, 542: 21-30.

[12]Sangid M D, Ezaz T, Sehitoglu H, et al. Energy of slip transmission and nucleation at grain boundaries [J]. Acta Materialia, 2011, 59(1): 283-296.

[13]Roters F, Diehl M, Eisenlohr P, et al. Crystal Plasticity Modeling, Microstructural Design of Advanced Engineering Materials [M]. Hoboken: John Wiley and Sons Incorporated, 2013.

[14]Roters F, Eisenlohr P, Hantcherli L, et al. Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: Theory, experiments, applications [J]. Acta Materialia, 2010, 58(4): 1152-1211.

[15]Yang Y, Wang L, Bieler T R, et al. Quantitative atomic force microscopy characterization and crystal plasticity finite element modeling of heterogeneous deformation in commercial purity titanium [J]. Metallurgical and Materials Transactions A, 2011, 42(3): 636-644.

[16]Guery A, Hild F, Latourte F, et al. Slip activities in polycrystals determined by coupling DIC measurements with crystal plasticity calculations [J]. International Journal of Plasticity, 2016, 81: 249-266.

[17]Zhang Z, Lunt D, Abdolvand H, et al. Quantitative investigation of micro slip and localization in polycrystalline materials under uniaxial tension [J]. International Journal of Plasticity, 2018, 108: 88-106.

[18]Jiménez M, Ludwig W, Gonzalez D, et al. The role of slip transfer at grain boundaries in the propagation of microstructurally short fatigue cracks in Ni-based superalloys [J]. Scripta Materialia, 2019, 162: 261-265.

[19]Guo Y, Britton T B, Wilkinson A J. Slip band-grain boundary interactions in commercial-purity titanium [J]. Acta Materialia, 2014, 76: 1-12.

[20]Wang L, Yang Y, Eisenlohr P, et al. Twin nucleation by slip transfer across grain boundaries in commercial purity titanium [J]. Metallurgical and Materials Transactions A, 2010, 41(2): 421-430.

[21]Hémery S, Nizou P, Villechaise P. In situ SEM investigation of slip transfer in Ti-6Al-4V: Effect of applied stress [J]. Materials Science and Engineering: A, 2018, 709: 277-284.

[22]Luster J, Morris M A. Compatibility of deformation in two-phase Ti-Al alloys: Dependence on microstructure and orientation relationships [J]. Metallurgical and Materials Transactions A, 1995, 26(7): 1745-1756.

 

 
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9