[1]Bieler T R, Eisenlohr P, Zhang C, et al. Grain boundaries and interfaces in slip transfer [J]. Current Opinion in Solid State and Materials Science, 2014, 18 (4): 212-226.
[2]Miller M P, Dawson P R. Understanding local deformation in metallic polycrystals using high energy X-rays and finite elements [J]. Current Opinion in Solid State and Materials Science, 2014, 18(5): 286-299.
[3]Callister W D, Rethwisch D G. Materials Science and Engineering: An Introduction [M]. The Ninth Edition. Hoboken: John Wiley and Sons Incorporated, 2013.
[4]Starink M J. Dislocation versus grain boundary strengthening in SPD processed metals: Non-causal relation between grain size and strength of deformed polycrystals [J]. Materials Science and Engineering: A, 2017, 705: 42-45.
[5]Boehlert C, Chen Z, Gutiérrez-Urrutia I, et al. In situ analysis of the tensile and tensile-creep deformation mechanisms in rolled AZ31 [J]. Acta Materialia, 2012, 60(4): 1889-1904.
[6]Miura H, Maruoka T, Yang X, et al. Microstructure and mechanical properties of multi-directionally forged Mg-Al-Zn alloy [J]. Scripta Materialia, 2012, 66(1): 49-51.
[7]Salandari-Rabori A, Zarei-Hanzaki A, Fatemi S M, et al. Microstructure and superior mechanical properties of a multi-axially forged WE magnesium alloy [J]. Journal of Alloys and Compounds, 2017, 693: 406-413.
[8]Lee T C, Robertson I M, Birnbaum H K. An in situ transmission electron microscope deformation study of the slip transfer mechanisms in metals [J]. Metallurgical Transactions A, 1990, 21(9): 2437-2447.
[9]King A, Ludwig W, Herbig M, et al. Three-dimensional in situ observations of short fatigue crack growth in magnesium [J]. Acta Materialia, 2011, 59(17): 6761-6971.
[10]Bieler T R, Eisenlohr P, Roters F, et al. The role of heterogeneous deformation on damage nucleation at grain boundaries in single phase metals [J]. International Journal of Plasticity, 2009, 25(9): 1655-1683.
[11]Sangid M D, Ezaz T, Sehitoglu H. Energetics of residual dislocations associated with slip-twin and slip-GBs interactions [J]. Materials Science and Engineering: A, 2012, 542: 21-30.
[12]Sangid M D, Ezaz T, Sehitoglu H, et al. Energy of slip transmission and nucleation at grain boundaries [J]. Acta Materialia, 2011, 59(1): 283-296.
[13]Roters F, Diehl M, Eisenlohr P, et al. Crystal Plasticity Modeling, Microstructural Design of Advanced Engineering Materials [M]. Hoboken: John Wiley and Sons Incorporated, 2013.
[14]Roters F, Eisenlohr P, Hantcherli L, et al. Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: Theory, experiments, applications [J]. Acta Materialia, 2010, 58(4): 1152-1211.
[15]Yang Y, Wang L, Bieler T R, et al. Quantitative atomic force microscopy characterization and crystal plasticity finite element modeling of heterogeneous deformation in commercial purity titanium [J]. Metallurgical and Materials Transactions A, 2011, 42(3): 636-644.
[16]Guery A, Hild F, Latourte F, et al. Slip activities in polycrystals determined by coupling DIC measurements with crystal plasticity calculations [J]. International Journal of Plasticity, 2016, 81: 249-266.
[17]Zhang Z, Lunt D, Abdolvand H, et al. Quantitative investigation of micro slip and localization in polycrystalline materials under uniaxial tension [J]. International Journal of Plasticity, 2018, 108: 88-106.
[18]Jiménez M, Ludwig W, Gonzalez D, et al. The role of slip transfer at grain boundaries in the propagation of microstructurally short fatigue cracks in Ni-based superalloys [J]. Scripta Materialia, 2019, 162: 261-265.
[19]Guo Y, Britton T B, Wilkinson A J. Slip band-grain boundary interactions in commercial-purity titanium [J]. Acta Materialia, 2014, 76: 1-12.
[20]Wang L, Yang Y, Eisenlohr P, et al. Twin nucleation by slip transfer across grain boundaries in commercial purity titanium [J]. Metallurgical and Materials Transactions A, 2010, 41(2): 421-430.
[21]Hémery S, Nizou P, Villechaise P. In situ SEM investigation of slip transfer in Ti-6Al-4V: Effect of applied stress [J]. Materials Science and Engineering: A, 2018, 709: 277-284.
[22]Luster J, Morris M A. Compatibility of deformation in two-phase Ti-Al alloys: Dependence on microstructure and orientation relationships [J]. Metallurgical and Materials Transactions A, 1995, 26(7): 1745-1756.
|