网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
Ti-55钛合金双层板的超塑成形/扩散连接数值模拟及工艺试验
英文标题:Numerical simulation and process test on superplastic forming/diffusion bonding for Ti-55 titanium alloy double-layer plate
作者:周凌华 沈中伟 许涛 
单位:湖州机床厂有限公司 
关键词:钛合金 超塑成形/扩散连接 工艺试验 金相组织 气胀成形 
分类号:TG306
出版年,卷(期):页码:2022,47(8):76-82
摘要:

 超塑成形/扩散连接技术是利用钛合金在低应变速率、合适的温度环境下伸长率高和变形阻力小的特点,在一次加热条件下同时完成气胀成形和扩散焊接,制造空心带夹层零件。选择典型的钛合金双层板中空构件为研究对象并制定成形工艺方案,采用有限元分析方法,模拟板件在超塑性状态下的成形过程,观测其在模腔内的气胀成形过程。其次通过分析成形构件的壁厚分布情况,调整并确定气压力-时间曲线用于指导工艺试验。最后对构件进行工艺试验和质量分析,取得不同压力模式下的扩散连接金相组织,以及与数值模拟相同取样点处的气胀成形壁厚数据,验证数值模拟结果与实际成形结果的偏差。

 Superplastic forming/diffusion bonding technology utilizes the characteristics of high elongation and low deformation resistance for titanium alloy under low strain rate and suitable temperature environment, and simultaneously completes inflatable forming and diffusion welding under one-time heating condition to manufacture hollow parts with interlayer. Therefore, for the typical hollow components of titanium alloy double-layer plate, its forming process plan was formulated and the forming process of the plate in the superplastic state was simulated by the finite element analysis method, then the inflatable forming process in the die cavity was observed. Secondly, by analyzing the wall thickness distribution condition of the formed components, the gas pressure-time curve was adjusted and determined to guide the process test. Finally, the process test and quality analysis of the components were carried out, and the metallographic structure of the diffusion bonding under different pressure modes as well as the wall thickness data during the inflatable forming at the same sampling point as the numerical simulation were obtained to verify the deviation between the numerical simulation and the actual forming results.

基金项目:
浙江省重点研发计划(2020C01093)
作者简介:
作者简介:周凌华(1987-),男,硕士,高级工程师,E-mail:zhoulh@hzjcc.com;通信作者:沈中伟(1973-),男,本科,工程师,E-mail:shenzw@hzjcc.com
参考文献:

 [1]胡丹. 飞机钛合金钣金件橡皮囊精确成形技术研究[D].南京: 南京航空航天大学, 2014.


Hu D. Precision Forming Technology Research on Rubber Bladder Forming of Aircraft Titanium Alloy Sheet Metal[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2014.


[2]赵林博, 徐珊珊. 钛合金超塑成形工艺及应用[J]. 科技创新导报,2011(19): 59-69.


Zhao L B, Xu S S. Superplastic forming process and application of titanium alloy[J]. Science and Technology Innovation Herald2011, (19): 59-69.


[3]洪慎章. 超塑性成形技术的应用[J]. 机械制造,1982(1): 36-38.


Hong S Z. Application of superplastic forming technology[J]. Machinery 1982, (1): 36-38.


[4]李细锋, 朱富慧,陈长江,等. 置氢钛合金超塑成形/扩散连接技术研究进展[J]. 航空制造技术, 2019, 62(16): 38-45.


Li X F, Zhu F H, Chen C J, et al. Research progress of superplastic forming/diffusion bonding of hydrogenated titanium alloy[J]. Aeronautical Manufacturing Technology 2019, 62(16): 38-45.


[5]Safiullin R V, Vasin R A, Enikeev F U. Determination of the parameters of superplastic forming for long rectangular thin sheet titanium alloy TI-6A1-4V[J]. Acta Metallurgica SinicaEnglish Letters2000, 13(2): 567-573.


[6]张宇翔, 汤泽军,许爱军,等. Ti55钛合金管电辅助加热气压胀形圆角填充成形规律及多场耦合数值模拟[J]. 锻压技术,2021, 46(4): 112-120.


Zhang Y X, Tang Z J, Xu A J, et al. Fillet filling law and multi-field coupling numerical simulation of Ti55 titanium alloy pipe in electric assisted heating bulging[J]. Forging & Stamping Technology, 2021, 46(4): 112-120.


[7]李志强, 陆文林,王伟亮,等. 5A06薄壁壳体超塑胀形过程壁厚分布规律及其控制[J]. 塑性工程学报,2017, 24(1): 108-113.


Li Z Q, Lu W L, Wang W L, et al. Wall thickness distribution and its control of 5A06 thin-walled shell superplastic bulging[J]. Journal of Plasticity Engineering,2017, 24(1): 108-113.


[8]蒋少松.  TC4钛合金超塑成形精度控制[D]. 哈尔滨: 哈尔滨工业大学, 2009.


Jiang S S. Accuracy Control of Superplastic Forming for TC4 Titanium Alloy[D]. Harbin: Harbin Institute of Technology, 2009.


[9]王国峰, 张建威,张晓巍,等. 2B06铝合金双层结构件DB&SPF组合工艺研究[J]. 锻压技术,2020, 45(7): 187-191.


Wang G F, Zhang J W, Zhang X W, et al. esearch on DBSPF combination process of double-layer structural parts for 2B06 aluminum alloy[J]. Forging & Stamping Technology, 2020, 45(7): 187-191.


[10]付明杰, 曾元松,钱健行,等.Ti-22Al-25Nb合金扩散连接工艺及连接机制研究[J].稀有金属,2020,44(12):1233-1239.


Fu M JZeng Y SQian J Het al. Diffusion bonding process and mechanism of Ti-22Al-25Nb alloy[J]. Chinese Journal of Rare Metals 2020,44(12):1233-1239.


[11]付明杰, 李继忠, 曾元松. 搅拌摩擦焊Ti-4.5Al-3V-2Fe-2Mo合金的超塑性变形行为研究[J].稀有金属,2020,44(1):1-8.


Fu M J, Li J Z, Zeng Y S. Superplastic deformation behavior of friction stir welded Ti-4.5Al-3V-2Fe-2Mo alloy[J]. Chinese Journal of Rare Metals2020,44(1):1-8.


[12]闫亮亮. Ti-55双层板超塑成形/扩散连接试验研究[D]. 南京: 南京航空航天大学, 2015.


Yan L L. Experiment Study on Process of Superplastic Forming/Diffusion Bonding for Double-sheet Structure of Ti-55 Titanium Alloy[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2015.


[13]成大先.机械设计手册[M].北京:化学工业出版社,2007.


Cheng D X. Handbook of Mechanical Design[M]. Beijing:Chemical Industry Press,2007.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9