[1]李群, 高秀华. 钢管生产[M]. 北京:冶金工业出版社, 2008.
Li Q,Gao X H. Steel Pipe Production[M]. Beijing:Metallurgical Industrial Press,2008.
[2]张进, 朱宝禄, 韩建新,等.连轧钢管的壁厚不均原因分析[J].钢管, 2013,42(1):55-58.
Zhang J,Zhu B L,Han J X, et al. Research on wall thickness inhomogeneity of steel pipe as rolled with mandrel mill[J]. Steel Pipe, 2013,42(1):55-58.
[3]李连诗. 钢管塑性变形原理(上册)[M]. 北京:冶金工业出版社, 1985.
Li L S. Plastic Deformation Principle of Steel Pipe (Volume I) [M]. Beijing: Metallurgical Industry Press,1985.
[4]双远华, 李国祯. 钢管斜轧理论及生产过程的数值模拟 [M]. 北京: 冶金工业出版社, 2001.
Shuang Y H,Li G Z. Numerical Simulation of Steel Pipe Slant Rolling Theory and Production Process[M]. Beijing:Metallurgical Industry Press, 2001.
[5]曹卫华, 李熙, 吴敏, 等. 基于极限学习机的热轧薄板轧制力预测模型[J]. 信息与控制, 2014,43(3): 270-275.
Cao W H,Li X,Wu M,et al.A rolling force prediction model for hot rolled sheets based on extreme learning machine [J].Information and Control,2014,43(3):270-275.
[6]Bagheripoor M, Bisadi H. Application of artificial neural networks for the prediction of roll force and roll torque in hot strip rolling process[J]. Applied Mathematical Modelling, 2013,37(7): 4593-4607.
[7]Son J S, Lee D M, Kim I S, et al. A study on on-line learning neural network for prediction for rolling force in hot-rolling mill[J]. Journal of Materials Processing Technology, 2005,164-165: 1612-1617.
[8]高山凤, 刘鸿飞, 郗安民, 等. 热轧板带横向厚度分布的预测与控制[J].哈尔滨工业大学学报, 2016,48(1): 180-183.
Gao S F,Liu H F,Xi A M,et al.Prediction and control of thickness transverse distribution in hot rolling strip[J]. Journal of Harbin Institute of Technology,2016,48(1):180-183.
[9]双远华, 赖明道. 人工神经网络在预测斜轧穿孔毛管偏差中的应用[J]. 中国有色金属学报, 2001,(5): 862-866.
Shuang Y H,Lai M D.Application of artificial neural networks on predicting deviation of tube in cross piercing process[J].The Chinese Journal of Nonferrous Metals,2001,(5):862-866.
[10]肖冬, 潘孝礼, 毛志忠, 等. 基于步进子时段MICR方法的毛管质量预报[J]. 仪器仪表学报, 2007,28(12): 2190-2196.
Xiao D,Pan X L,Mao Z Z,et al. Quality prediction of tube hollow based on step-by-step staged MICR [J]. Chinese Journal of Scientific Instrument,2007,28(12):2190-2196.
[11]陈鑫, 朱明杰, 吴敏, 等. 结合机理计算与神经网络预测的无缝钢管轧制力建模[J].冶金自动化, 2015,39(4): 32-37.
Chen X,Zhu M J,Wu M,et al. Rolling force modeling for seamless steel pipe combining mechanism model and neural network prediction[J]. Metallurgical Industry Automation,2015,39(4):32-37.
[12]魏子茹, 卢延辉, 王鹏宇, 等. 基于CRITIC法的灰色关联理论在无人驾驶车辆测试评价中的应用[J]. 机械工程学报, 2021,57(12): 99-108.
Wei Z R,Lu Y H,Wang P Y,et al. Application of grey correlation theory based on CRITIC method in autonomous vehicles test and evaluation [J]. Journal of Mechanical Engineering,2021,57(12):99-108.
[13]Larkiola J, Myllykoski P, Korhonen A S, et al. The role of neural networks in the optimisation of rolling processes[J]. Journal of Materials Processing Technology, 1998,80-81: 16-23.
[14]Sun W, Xu Y F. Financial security evaluation of the electric power industry in China based on a back propagation neural network optimized by genetic algorithm[J]. Energy, 2016,101: 366-379.
[15]夏维, 刘新学, 范阳涛, 等. 基于混合遗传BP神经网络的城市系统作战能力评估[J]. 系统工程与电子技术, 2017,39(1): 107-113.
Xia W,Liu X X,Fan Y T,et al. Combat capability evaluation of city system based on mix-genetic algorithm BP neural network[J]. Systems Engineering and Electronics,2017,39(1):107-113.
[16]Wang J L, Shi P, Jiang P, et al. Application of BP neural network algorithm in traditional hydrological model for flood forecasting[J]. Water, 2017,9(1): 48.
[17]Yang Y Y, Linkens D A, Talamantes-silva J. Roll load prediction-Data collection, analysis and neural network modelling[J]. Journal of Materials Processing Technology, 2004,152(3): 304-315.
[18]Chen K, Yang S J, Batur C. Effect of multi-hidden-layer structure on performance of BP neural network: Probe[A]. Proceedings of 2012 8th International Conference on Natural Computation[C]. IEEE, 2012.
[19]Khan S U, Yang S Y, Wang L Y, et al. A modified particle swarm optimization algorithm for global optimizations of inverse problems[J]. IEEE Transactions on Magnetics, 2016,52(3): 1-4.
[20]毛志翔, 鲁世红, 李正芳, 等. 电加热渐进成形工艺参数优化及成形温度预测[J]. 热加工工艺, 2019,48(19): 100-103.
Mao Z X,Lu S H,Li Z F,et al.Optimization of process parameters and prediction of forming temperature for electro-heating incremental forming[J]. Hot Working Technology,2019,48(19):100-103.
|