网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
超薄超细智能手机热管拉拔工艺及组织性能演变
英文标题:Drawing process and evolution of microstructure and properties for heat pipe of ultra-thin and super-fine in smartphone
作者:陈岩 肖桥平 李坤 游婧 王松伟 张士宏 
单位:江西铜业集团有限公司 江西铜业技术研究院有限公司  中国科学院金属研究所 
关键词:智能手机热管 无氧铜 拉拔工艺 组织演变 力学性能 导电率 
分类号:TG146.1
出版年,卷(期):页码:2022,47(8):111-117
摘要:

 在液压直拉机上采用游动芯头拉拔成形智能手机用超薄超细无氧铜热管,研究了拉拔工艺对拉拔过程断管的影响,观察各道次铜管晶粒组织演变和拉拔过程中的力学性能和导电性能变化。结果表明:无氧铜管经游动芯头多道次拉拔,晶粒不断趋于沿拉拔方向的纤维状,同时抗拉强度和维氏硬度不断提升,而拉拔变形对导电率的影响比较小。当无氧铜管累计变形量达75.8%时,铜材的抗拉强度为416.5 MPa,继续拉拔容易发生断管问题,需进行中间退火。经过8道次拉拔变形,1次中间退火处理后,得到抗拉强度为403.8 MPa、伸长率为1.78%、导电率为98.85%IACS、外径公差为±0.02 mm、壁厚公差为±0.01 mm的Ф2 mm×0.08 mm规格的超薄超细智能手机热管。

 The oxygen-free copper heat pipes of ultra-thin and super-fine in the smartphone were drawn by a hydraulic drawing machine with a floating plug, and the influence of drawing process on pipe breakage during the drawing process was studied. Then, the microstructure evolution of grains in copper pipe and the changes of mechanical and electrical conductivity properties during the drawing process were observed. The results show that the oxygen-free copper pipe is drawn by the floating plug in multiple passes, the grains tend to be fibrous along the drawing direction, and the tensile strength and Vickers hardness are continuously improved, but the influence of drawing deformation on the electrical conductivity is relatively small. When the cumulative deformation amount of the oxygen-free copper pipe reaches 75.8%, the tensile strength of the copper pipe is 416.5 MPa, and the problem of pipe breakage is easy to occur if continuing to draw, so the  intermediate annealing is required. After deformation of eight drawing passes and one intermediate annealing treatment, the heat pipe of ultra-thin and super-fine in the smartphone with specification of Φ2 mm×0.08 mm is obtained with the tensile strength of 403.8 MPa, the elongation of 1.78%, the electrical conductivity of 98.85%IACS, the outer diameter tolerance of ±0.02 mm and the wall thickness tolerance of ±0.01 mm.

基金项目:
中国博士后科学基金资助项目(2019M662276);中国科学院科技服务网络计划区域重点资助项目(KFJ-STS-QYZD-145);江西省重大科技研发专项(20203ABC28W004)
作者简介:
陈岩(1984-),男,博士,副研究员,E-mail:ychen10b@126.com
参考文献:

 [1]Zhou W J, Li Y, Chen Z Set al. Ultra-thin flattened heat pipe with a novel band-shape spiral woven mesh wick for cooling smartphones[J]. International Journal of Heat and Mass Transfer, 2020, 146:118792.


[2]谢慧华. 触底即将反弹展望2020年智能手机市场[J]. 微型计算机, 2020(6):5-8.


Xie H H. The bottom is about to rebound and looking forward to the smart phone market in 2020[J]. Micro Computer2020,(6):5-8.


[3]张翰林, 隋晓莹. 手机智能散热器设计[J]. 工业设计, 2021(8):69-70.


Zhang H LSui X Y. Design of smart cellphone cooler[J]. Industrial Design2021,(8):69-70.


[4]Chaudhry H N, Hughes B R, Gharri S A. A review of heat pipe systems for heat recovery and renewable energy applications[J]. Renewable and Sustainable Energy Reviews, 2012, 16(4):2249-2259.


[5]Chen X P, Ye H YFan X Jet al. A review of small heat pipes for electronics[J]. Applied Thermal Engineering, 2016, 96:1-17.


[6]Jouhara H, Chauhan A, Nannou Tet al. Heat pipe based systems-advances and applications[J]. Energy, 2017, 128:729-754.


[7]Siricharoenpanich A, Wiryasart S, Srichat Aet al. Thermal management system of CPU cooling with a novel short heat pipe cooling system[J]. Case Studies in Thermal Engineering, 2019, 15:100545.


[8]曾艳祥. 薄壁铜管游动芯头拉拔机上料系统关键技术及拉拔成形过程影响研究[D]. 赣州:江西理工大学, 2017.


Zeng Y X. Research on the Key Technologies on Feeding System for Floating-mandrel Drawing Machine of Thin-walled Copper Tube and the Influence of Drawing Process[D].GanzhouJiangxi University of Science and Technology2017.


[9]刘劲松, 陈大勇, 张士宏. 基于数值模拟的TP2铜管三联拉工艺优化[J]. 中国有色金属学报, 2015, 25(2): 458-465.


Liu J SChen D YZhang S H. Optimization of triple TP2 copper tube drawing process based on numerical simulation[J].The Chinese Journal of Nonferrous Metals2015,252):458-465.


[10]刘劲松, 陈大勇, 陈立鹏,. 退火处理对TP2铜管材组织与性能的影响[J]. 材料热处理学报, 2016, 37(3):7-15.


Liu J SChen D YChen L Pet al. Effect of annealing treatment on microstructure and mechanical properties of TP2 copper tubes[J]. Transactions of Materials and Heat Treatment2016,373):7-15.


[11]Wang S W, Chen Y, Song H Wet al. Investigation of texture transformation paths in copper tube during floating plug drawing process[J]. International Journal of Material Forming, 2020, 12(3): 23-29.


[12]王松伟, 张士宏, 宋鸿武,等. TP2铜管拉拔成形过程组织演变规律[J]. 中国有色金属学报, 2019, 29(4): 782-789.


Wang S WZhang S HSong H Wet al.Evolution of microstructure of TP2 copper tube during drawing process[J].The Chinese Journal of Nonferrous Metals2019,294):782-789.


[13]张士宏, 刘劲松,程明,等. 精密铜管铸轧加工技术[M]. 北京:国防工业出版社, 2016.


Zhang S HLiu J SCheng Met al. Cast and Roll Technology of Precision Copper Tubes[M]. BeijingNational Defense Industry Press2016.


[14]Wang X, Xiao Z, Qiu W Tet al. The evolution of microstructure and properties of a Cu-Ti-Cr-Mg-Si alloy with high strength during the multi-stage thermomechanical treatment[J]. Materials Science and Engineering A, 2020, 803:140-510.


[15]Cheng C, Song K X, Mi X Jet al. Microstructural evolution and properties of Cu-20 wt% Ag alloy wire by multi-pass continuous drawing[J]. Nanotechnology Reviews, 2020, 9(1):1359-1367.


[16]Lei L, Shen Y F, Chen X Het al. Ultrahigh strength and high electrical conductivity in copper[J]. Science, 2004, 304(5669):422-426.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9