网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
装饰用316L不锈钢粉末高速压制成形过程中的孪晶行为
英文标题:Twinning behavior of 316L stainless steel powder for decoration during high velocity compaction forming process
作者:马春宇 陈湘平 肖志瑜 袁军平 
单位:广州番禺职业技术学院 华南理工大学 
关键词:316L不锈钢粉末 高速压制 孪晶 耐腐蚀性能 冲击动量 
分类号:TG144
出版年,卷(期):页码:2022,47(8):130-137
摘要:

 以316L不锈钢粉末为研究对象,通过密度测试、扫描电镜(SEM)、金相组织、透射电镜(TEM)、选区电子衍射(SAED)、电化学试验等手段研究了冲击动量对致密化行为和孪晶行为以及孪晶行为对耐腐蚀性能的影响规律。研究结果表明:在较低的冲击能量(192、300和588 J)下,低冲击动量能获得更高的密度;在较高的冲击能量(972和1554 J)下,高冲击动量能获得更高的密度。无论冲击能量高低,或冲击动量高低,316L不锈钢粉末在高速压制过程中均能观察到孪晶组织,当晶带轴为[114]时,孪晶面为(220),更高的冲击能量带来更高的孪晶密度。在较低的冲击能量下,较低的冲击动量会获得更大密度的孪晶组织;而在较高的冲击能量下,较高的冲击动量会获得更大密度的孪晶组织。致密度是影响耐腐性性能的重要因素,致密度越低,耐腐性能越差;在致密度相近的前提下,更高的孪晶密度,不但有助于提高耐腐蚀性能,还可有效降低腐蚀速率。

 For 316L stainless steel powder, the influence laws of impact momentum on densification and twinning behaviors and the influence law of twinning behavior on corrosion resistance property were investigated by density test, scanning electron microscope (SEM), metallographic structure, transmission electron microscope (TEM), selected area electron diffraction (SAED) and electrochemical test. The results show that lower impact momentum can obtain higher density under lower impact energy(192,300 and 588 J), and higher impact momentum can obtain higher density under higher impact energy(972 and 1554 J). Regardless of impact energy or impact momentum, the twin structure can be observed in 316L stainless steel powder during high velocity compaction process, and when the crystal zone axis is [1 1 4], the twin plane is(2 2 0),and higher impact energy can lead to higher twin density. Under lower impact energy, lower impact momentum can lead to twin structure with higher density, and under higher impact energy, higher impact momentum can lead to twin structure with higher density. In addition, density is an important factor affecting the corrosion resistance performance, and the lower the density is, the worse the corrosion resistance property is. However, under the premise of similar densities, the hgiher twin density not only helps to improve the corrosion resistance property, but also effectively reduces the corrosion rate.

基金项目:
2020年广东省普通高校特色创新项目(2020KTSCX282);广东省教育科学规划课题(2021GXJK568);广州市基础与应用基础研究项目(202102080149);广州市基础与应用基础研究项目(202201011851)
作者简介:
作者简介:马春宇(1981-),男,硕士,副教授,E-mail:18457725@qq.com;通信作者:陈湘平(1974-),女,博士,高级工程师,E-mail:376254686@qq.com
参考文献:

 [1]袁军平,王昶.流行饰品材料及生产工艺[M]. 2.武汉:中国地质大学出版社,2015.


Yuan P JWang C. Popular Jewelry Materials and Production Technology[M]. 2nd Edition.Wuhan:China University of Geosciences Press2015.


[2]Wang J Z, Qu X H, Yin H Q, et al. High velocity compaction of ferrous powder[J]. Powder Technology, 2008, 192(1):131-136.


[3]王建忠,曲选辉,尹海清,等.铁粉的高速压制成形[J].材料研究学报,2008,22 (6):589-592.


Wang J ZQu X HYin H Qet al. High velocity compaction of ferrous powder[J].Chinese Journal of Materials Research2008,22 (6):589-592.


[4]Khan D F, Yin H Q, Usman Z, et al. Improvement of a high velocity compaction technique for iron powder[J]. Acta Metallurgica Sinica:English Letters, 2013, 26(4):399-403.


[5]Khan D F, Yin H Q, Khan Met al. Analysis of density and mechanical properties of iron powder with upper relaxation assist through high velocity compaction[J]. Materials Science Forum, 2013, 749:41-46.


[6]Bos B,Fors C,Larsson T. Industrial implementation of high velocity compaction for improved properties[J]. Powder Metallurgy,2006,49(2):107-109.


[7]李超杰.316L不锈钢温粉末高速压制成形规律及其致密化机理的研究[D].广州:华南理工大学,2012.


Li C J.Investigation on Densification Mechanism and High Velocity Compaction of Warm 316L Stainless Steel Powders[D]. Guangzhou:South China University of Technology,2012.


[8]Zhang H, Zhang L, Dong G, et al. Effects of warm die on high velocity compaction behaviour and mechanical properties of iron based PM alloy[J]. Powder Metallurgy, 2016, 59(2):100-106.


[9]李超杰,肖志瑜,林小为,.316L不锈钢粉末高速压制行为[J].粉末冶金材料科学与工程,2012,17 (3):350-355.


 Li C J,Xiao Z Y,Lin X W, et al. Behaviors of 316L stainless steel powders in high velocity compaction[J].Materials Science and Engineering of Powder Metallurgy,2012,17 (3):350-355.


[10]柯美元.316L不锈钢粉末压坯的烧结行为[J].粉末冶金工业,2012,22 (5):29-32.


Ke M Y.Sintering behaviors of 316L stainless steel powder[J].Powder Metallurgy Industry,2012,22 (5):29-32.


[11]GB/T 5163—2006,烧结金属材料(不包括硬质合金)可渗性烧结金属材料密度、含油率和开孔率的测定[S].


GB/T 5163—2006Sintered metal materialsexcluding hardmetals—Permeable sintered metal materials—Determination of densityoil contentand open porosity[S].


[12]虞海燕,张洋,吕爱强,.异步轧制对316L不锈钢组织与性能的影响[J].材料与冶金学报,2009,8 (1):69-72.


 Yu H Y,Zhang Y, Lvy A Q, et al.Effect of cross shear rolling on microstructure and properties of 316L stainless steel[J].Jourmal of Materials and Metallurgy,2009,8 (1):69-72.


[13]虞海燕,张洋,吕爱强,.轧制工艺对316L不锈钢组织和耐蚀性能的影响[J].材料科学与工艺,2010,18(2):202-205.


Yu H Y,Zhang Y,Lvy A Q,et al.Effect of rolling process on microstructure and corrosion behavior of 316L stainless steel[J].Materials Science & Technology,2010,18(2):202-205.

服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9