[1]李彩风, 张兆隆. 金属工艺学[M]. 北京: 北京理工大学出版社, 2013.
Li C F,Zhang Z L. Technology of Metals[M]. Beijing:Beijing Institute of Technology Press,2013.
[2]尹晓辉, 李响,刘静安,等. 铝合金冷轧及薄板生产技术[M]. 北京: 冶金工业出版社, 2010.
Yin X H,Li X,Liu J A,et al. Aluminum Alloy Cold Rolling and Sheet Production Technology[M]. Beijing: Metallurgical Industry Press,2010.
[3]杨荃, 陈先霖. 冷轧机的板形控制目标模型[J]. 北京科技大学学报, 1995,(3):254-258.
Yang Q,Chen X L. Target model of the automatic shape control on cold strip mill[J].Journal of University of Science and Technology Beijing,1995,(3):254-258.
[4]薛春江, 徐文利, 张巍. 基于工程设计应用的铝板带热轧规程设计[J]. 轻合金加工技术, 2018,46(7):39-44.
Xue C J,Xu W L,Zhang W. Design of hot rolling schedule for aluminum plate and strip based on engineering design and application[J].Light Alloy Fabrication Technology,2018,46(7):39-44.
[5]寇新民, 张冬花. 能耗负荷分配法在铝冷轧生产线的应用[J]. 冶金自动化, 2017,41(5):44-46.
Kou X M, Zhang D H. Energy load distribution for aluminum cold rolling[J]. Metallurgy Industry Automation,2017,41(5):44-46.
[6]曹建国, 江军, 邱澜, 等. 新一代高技术宽带钢冷轧机全机组一体化板形控制[J]. 中南大学学报:自然科学版, 2019,50(7):1584-1591.
Cao J G, Jiang J, Qiu L, et al. High precision integrated profile and flatness control for new-generation high-tech wide strip cold rolling mills[J]. Journal of Central South University: Science and Technology,2019,50(7):1584-1591.
[7]邢德茂, 姚利辉, 李学通. 2030 mm冷连轧机组板形预报及影响因素研究[J]. 塑性工程学报, 2021,28(3):210-216.
Xing D M, Yao L H, Li X T.Study on prediction and influencing factors of flatness of 2030 mm tandem cold rolling mill[J]. Journal of Plasticity Engineering,2021,28 (3): 210-216.
[8]罗永军, 王长松, 曹建国, 等. 兼顾板形的热连轧机负荷分配的优化[J]. 北京科技大学学报, 2005,(1):94-97.
Luo Y J, Wang C S, Cao J G, et al. Load distribution optimization helpful to shape control of hot strip mills[J]. Journal of University of Science and Technology Beijing,2005, (1): 94-97.
[9]呼小军, 何安瑞, 王连生, 等. 基于改进遗传算法的铝热轧精轧负荷分配[J]. 轻合金加工技术, 2010,38(7):30-34.
Hu X J, He A R, Wang L S, et al. Aluminum hot finish rolling with optimized load distribution based on improved GA[J]. Light Alloy Fabrication Technology,2010,38 (7): 30-34.
[10]孙升阳, 沈新玉, 胡柯, 等. 基于粒子群算法的单机架冷轧硅钢负荷分配优化[A]. 2009年全国冷轧板带生产技术交流会论文集[C].包头:2009.
Sun S Y, Shen X Y, Hu K, et al. Optimization of load distribution in single-stand rolling of silicon steel based on PSO algorithm[A]. Proceedings of the 2009 National Cold Rolled Strip Production Technology Exchange Conference[C]. Baotou: 2009.
[11]徐乐江. 板带冷轧机板形控制与机型选择[M]. 北京: 冶金工业出版社, 2007.
Xu L J. Flatness Control in Clod Strip Rolling and Mill Type Selection[M].Beijing: Metallurgical Industry Press,2007.
[12]沈继程, 矫志杰, 王国栋. 应用简单迭代法进行可逆冷轧机负荷分配计算[J]. 钢铁研究学报, 2007,(3):35-37.
Shen J C, Jiao Z J, Wang G D. Simple iteration method of calculating load distribution for reversible cold mill[J]. Journal of Iron and Steel Research, 2007, (3): 35-37.
[13]Lenard J G. 板带轧制基础[M]. 龚殿尧, 宋向荣, 译. 沈阳: 东北大学出版社, 2015.
Lenard J G. Primer on Flat Rolling[M]. Translated by Gong D Y,Song X R. Shenyang:Northeastern University Press,2015.
[14]华建新, 王贞祥. 全连续式冷连轧机过程控制[M]. 北京: 冶金工业出版社, 2000.
Hua J X,Wang Z X. Process Control of Fully Continuous Tandem Cold Mill[M]. Beijing:Metallurgical Industry Press,2000.
[15]杨美顺. 现代冷轧机发展现状及展望[J]. 中国冶金, 2004,(10):15-19.
Yang M S. Development and expectation of modern cold rolling mills[J]. China Metallurgy, 2004, (10): 15-19.
[16]魏纯纯, 陈明和, 孙磊, 等. 3D封装用Cu/Sn/Cu焊点的组织与剪切性能研究[J].稀有金属,2020,44(6):603-608.
Wei C C, Chen M H, Sun L, et al. Microstructure and shear property of Cu/Sn/Cu solder joints for 3D packaging[J]. Chinese Journal of Rare Metals,2020,44(6):603-608.
[17]刘培锷, 张世杰. 金属剪切过程力学研究进展[J]. 力学进展, 1987,17(1):39-45.
Liu P E, Zhang S J. On researches of shearing progresses of metals [J]. Advance in Mechanics, 1987, 17(1): 39-45.
|