[1]贺良国, 赵杰, 谷先广. 基于多胞结构的车身前端轻量化和耐撞性设计[J]. 汽车工程, 2020, 42(6): 832-839,846.
He L G, Zhao J, Gu X G.Lightweight and crashworthiness design of vehicle body front-end based on multi-cell structure[J].Automotive Engineering, 2020, 42(6): 832-839,846.
[2]徐建全, 杨沿平. 基于Vensim的汽车轻量化全生命周期动态评价[J]. 计算机集成制造系统, 2020, 26(4): 954-969.
Xu J Q, Yang Y P. Dynamic evaluation of lightweight automotive life cycle based on Vensim software [J]. Computer Integrated Manufacturing Systems, 2020, 26(4): 954-969.
[3]张健, 谢禹琳. 某微型电动商用车车架轻量化优化研究[J]. 机电工程, 2020, 37(3): 283-287.
Zhang J, Xie Y L. Optimization of lightweight frame for a micro-electric commercial vehicle [J]. Journal of Mechanical & Electrical Engineering, 2020, 37(3): 283-287.
[4]Chen S P, Rana R, Haldar A, et al. Current state of Fe-Mn-Al-C low density steels [J]. Progress in Materials Science, 2017, 89: 345-391.
[5]潘雪新, 常红, 李忠文, 等. 激光淬火对高速动车组EA4T车轴钢组织和性能的影响[J]. 金属热处理, 2020, 45(5): 161-165.
Pan X X, Chang H, Li Z W, et al. Influence of laser quenching on structure and property of EA4T axle steel for high-speed EMU [J]. Heat Treatment of Metals, 2020, 45(5): 161-165.
[6]夏源. 车用退火态Fe-24Mn-4Cr-0.5C高锰钢力学性能和氢脆性能分析[J]. 锻压技术, 2020, 45(4): 184-188.
Xia Y. Analysis on mechanical and hydrogen embrittleness properties of annealed Fe-24Mn-4Cr-0.5C high manganese steel for vehicle [J]. Forging & Stamping Technology, 2020, 45(4): 184-188.
[7]赵伟章, 刘生. 氧化时间对乙醇助燃车用82B钢氧化形貌的影响[J]. 兵器材料科学与工程, 2019, 42(5): 82-85.
Zhao W Z, Liu S. Effect of oxidation time on oxidation morphology of 82B steel for ethanol combustion supporting[J]. Ordnance Material Science and Engineering, 2019, 42(5): 82-85.
[8]Zambrano O A. A general perspective of Fe-Mn-Al-C steels [J]. Journal of Materials Science, 2018, 53(20): 14003-14062.
[9]Ren P, Chen X P, Chen Z X, et al. Synergistic strengthening effect induced ultrahigh yield strength in lightweight Fe-30Mn-11Al-1.2C steel [J]. Material Science & Engineering, 2019, 752:160-166.
[10]李海, 毛庆忠, 王芝秀, 等. 预时效+冷轧变形+再时效对6061铝合金组织和力学性能的影响[J]. 金属学报, 2014, 50(10): 1244-1252.
Li H, Mao Q Z, Wang Z X, et al. Effect of the thermo-mechanical treatment of pre-aging,cold rolling and re-aging on microstructures and mechanical properties of 6061 Al alloy [J].Acta Metallurgica Sinica, 2014, 50(10): 1244-1252.
[11]张南南. 变形与热处理组合工艺对6061铝合金组织和性能的影响[D]. 镇江:江苏大学,2017.
Zhang N N. Effect of Combined Process of Deformation and Heat Treatment on Microstructure and Properties of 6061 Aluminum Alloy [D]. Zhenjiang:Jiangsu University, 2017.
[12]Yao M J, Welsch E, Ponge D, et al. Strengthening and strain hardening mechanisms in a precipitation-hardened high-Mn lightweight steel [J]. Acta Materialia, 2017, 140: 258-273.
[13]Lee K, Park S J, Kang J Y, et al. Investigation of the aging behavior and orientation relationships in Fe-31.4Mn-11.4Al-0.89C low-density steel [J]. Journal of Alloys and Compounds, 2017, 723:146-156.
[14]徐从昌, 孙朝蓉, 于婉玉, 等. 轻量化车身用AlMgSi合金时效工艺及强化相析出行为研究进展[J]. 塑性工程学报,2019,26(4): 9-18.
Xu C C, Sun C R, Yu W Y, et al. Research progress on aging process and precipitation behavior of AlMgSi alloy used for lightweight vehicle body [J]. Journal of Plasticity Engineering, 2019,26 (4): 9-18.
[15]孙大翔, 董宇, 叶凌英, 等. 形变热处理工艺对2519A铝合金动态变形行为的影响[J]. 材料工程, 2021, 49(2): 79-87.
Sun D X, Dong Y, Ye L Y, et al. Effect of thermo-mechanical treatments on dynamic deformation behaviors of 2519A aluminum alloy[J]. Journal of Materials Engineering, 2021, 49(2): 79-87.
[16]任平, 陈兴品, 王存宇, 等. 预变形和双级时效对Fe-30Mn-11Al-1.2C奥氏体低密度钢显微组织和力学性能的影响[J]. 金属学报, 2022, 58(6): 771-780.
Ren P, Chen X P, Wang C Y, et al. Effect of pre-strain and two-step aging on microstructure and mechanical properties of Fe-30Mn-11Al-1.2C austenitic low-density steel [J]. Acta Metallurgica Sinica, 2022, 58(6): 771-780.
|