网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
热变形对35CrMo钢淬火马氏体晶体学特征的影响
英文标题:Influence of hot deformation on crystallographic characteristics of quenched martensite for 35CrMo steel
作者:魏明刚 龚彬 闵武 栗文强 莫安军 袁武华 
单位:中国第二重型机械集团德阳万航模锻有限责任公司 湖南大学 
关键词:35CrMo钢 动态再结晶 马氏体 晶体学 奥氏体 
分类号:TG113
出版年,卷(期):页码:2022,47(8):249-254
摘要:

 通过热压缩实验获得不同应变下35CrMo钢的淬火马氏体组织。基于电子背散射衍射(EBSD)测试技术研究了热变形对35CrMo钢淬火马氏体晶体学特征的影响,重点分析了不同变形量下奥氏体晶粒尺寸及马氏体变体组合特征的变化。研究结果表明:多轮动态再结晶的出现造成了高温真应力-真应变曲线的多峰变化,且第1轮动态再结晶明显细化了奥氏体晶粒。原始奥氏体的晶粒取向决定了淬火后马氏体变体的类型,且淬火马氏体变体的组合方式均为密排面组合。不同变形量下淬火马氏体变体间的取向差集中在50°~60°范围内,可通过引入大角度晶界来细化晶粒。

 The quenched martensite structure of 35CrMo steel under different strains was obtained by hot compression test. Then, the influences of hot deformation on the crystallographic characteristics of quenched martensite for 35CrMo steel were investigated based on electron backscatter diffraction(EBSD)test technique, and the changes of austenite grain size and combination characteristics of martensitic variants under different deformation amounts were analyzed. The research results show that the occurrence of dynamic crystallization with multiple rounds results in multimodal changes of the true stress-true strain curve at high temperature, and the first round of dynamic crystallization significantly refines the austenite grains. The grain orientation of original austenite determines the type of martensitic variants after quenching, and the combination pattern of quenched martensitic variants is close-packed plane combination. In addition, the orientation difference between the quenched martensite variants under different deformation amounts is concentrated in the range of 50°-60°, and the grains can be refined by introducing large-angle grain boundaries.

基金项目:
作者简介:
作者简介:魏明刚(1978-),男,学士,工程师,E-mail:wmg213@163.com
参考文献:

 [1]郭会光, 张巧丽, 游晓红, . 35CrMo钢热变形机制的模拟研究[J]. 大型铸锻件, 2000, 2: 22-25.


 Guo H G, Zhang Q L, You X H, et al. Simulated research on hot forming mechanism of 35CrMo steel [J]. Heavy Casting and Forging, 2000, 2: 22-25.


[2]黄元春, 王三星, 肖政兵. 不同条件高温压缩变形后35CrMo钢的显微组织[J]. 机械工程材料, 2017, 6(41): 87-92.


Huang Y XWang S X, Xiao Z B. Microstructures of 35CrMo steel after high-temperature compression deformation under different conditions [J]. Mechanical Engineering Materials, 2017, 6(41): 87-92.


[3]Speich G R, Leslie W C. Tempering of steel[J]. Metallurgical Transactions, 1972, 3(5): 1043-1054.


[4]Zheng Y X, Wang F M, Li C R, et al. Effect of microstructure and precipitates on mechanical properties of Cr-Mo-V alloy steel with different austenitizing temperatures[J]. ISIJ International, 2018, 58(6): 1126-1135.


[5]祝家祺, 谭谆礼, 张敏, . 钒和铬对贝氏体车轮钢回火组织与性能的影响[J].稀有金属,2020,44(9):957-966.


Zhu J QTan Z LZhang Met al. Microstructure and mechanical properties of tempered bainitic railway wheel steels with addition of V and Cr[J]. Chinese Journal of Rare Metals, 2020,44(9):957-966.


[6]Morito S, Edamatsu Y, Ichinotani K, et al. Quantitative analysis of three-dimensional morphology of martensite packets and blocks in iron-carbon-manganese steels[J]. Journal of Alloys and Compounds, 2013, 577: 587-592.


[7]Nakada N, Tsuchiyama T, Takaki S, et al. Variant selection of reversed austenite in lath martensite[J]. ISIJ International, 2007, 47(10): 1527-1532.


[8]Miyamoto G, Iwata N, Takayama N, et al. Quantitative analysis of variant selection in ausformed lath martensite[J]. Acta Materialia, 2012, 60: 1139-1148.


[9]Ebrahimi R, Najafizadeh A. A new method for evaluation of friction in bulk metal forming[J]. Journal of Materials Processing Technology, 2004, 152(2):136-143.


[10]叶健松, 徐祖耀. 35CrMo钢动态再结晶的实验研究与数值模拟[J]. 轧钢, 2004,(5): 23-27.


Ye J S, Xu Z Y, Experimental research and numerical simulation of dynamic recrystallization of 35CrMo steel[J]. Steel Rolling2004,(5): 23-27.


[11]张斌, 张鸿冰. 35CrMo结构钢的热变形行为[J]. 金属学报, 2004, 40(10): 1109-1114.


Zhang B,Zhang H B. Hot deformation behavior of 35CrMo steel [J]. Acta Metallurgica Sinica, 2004, 40(10): 1109-1114.


[12]胡希磊, 韩鹏彪, 鲁素玲, . 35CrMo钢高温流变行为及其本构方程[J]. 河北科技大学学报, 2019, 40(4): 351-358.


Hu X L, Han P B, Lu S Let al. High temperature flow behavior and constitutive model of 35CrMo steel[J]. Journal of Hebei University of Science and Technology, 2019, 40(4): 351-358.


[13]Miyamoto G, Takayama N, Furuhara T. Effects of transformation temperature on variant grouping of bainitic ferrite in low carbon steel[J]. Acta Materialia, 2012, 60(5): 2387-2396.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9