网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
工件厚度不均匀性对辊弯成形曲率半径的影响
英文标题:Influence of workpiece thickness non-uniformity on curvature radius for roll bending
作者:郑子君 陶裕梅 
单位:重庆理工大学 机械工程学院 
关键词:辊弯 欧拉网格 蒙特卡洛法 欧拉梁 随机误差 
分类号:TG38
出版年,卷(期):页码:2022,47(9):58-65
摘要:

 受制造工艺的影响,原始工件的厚度不均匀,这会对辊弯产品的形状产生影响。通过建立基于欧拉网格的有限元模型,对工件局部厚度具有正态分布的误差时的三辊辊弯过程进行了蒙特卡洛模拟。与传统的基于拉格朗日网格的有限元模型相比,辊弯模拟方案可以明显减小网格规模并简化接触处理,得到了辊弯成形曲率半径的统计规律,并利用3D打印进行了料厚不均匀性与辊弯曲率半径关系的实验。结果表明:随着料厚不均匀性的增大,产品的局部半径分布更广,宏观上观察到的产品半径将减小,实验结果也证实了这一点;对于给定的目标产品形状,辊轮间距和名义厚度越小,辊弯成形受到料厚不均匀性的影响就越大。

 Due to the influence of manufacture process, the thickness of original workpiece is nonuniform, which can affect the shape of roll bending product. A finite element model based on Eulerian grid was proposed to conduct the Monte Carlo simulation of three-roll bending process, in which the local thickness of workpiece  had normal-distributed error. Comparing with the conventional Lagrangian grid finite element model, the roll bending simulation scheme could reduce the grid number and simplify the contact treatment obviously. Then the statistic laws of curvature radius for roll forming was analyzed, and experiments of relationship between blank thickness non-uniformity and curvature radius of roll bending were conducted by using the 3D printing. The results show that with the increasing of blank thickness non-uniformity, the distribution of local radius for product gets wider, and the macro radius of product becomes smaller, which is verified by the experimental result. For a given goal produce shape, the influence of blank thickness non-uniformity on roll bending is more significant when a smaller roller distance or a thinner nominal thickness is employed.

 

基金项目:
国家自然科学基金青年科学基金资助项目(11702046);重庆市教委科学研究项目(KJ1600910)
作者简介:
郑子君(1985-),男,博士,副教授 E-mail:zhengzi@cqut.edu.cn
参考文献:

 [1]Bassett M, Johnson W. The bending of plate using a three-roll pyramid type plate bending machine[J]. Journal of Strain Analysis for Engineering Design, 1966, 1(5):398-414.


 


[2]Fu Z, Tian X, Chen W, et al. Analytical modeling and numerical simulation for three-roll bending forming of sheet metal[J]. The International Journal of Advanced Manufacturing Technology, 2013,69(5): 1639-1647.


 


[3]Kim K W , Kim M K , Cho W Y . An analytical model of roll bending steel pipe formed by three rollers[J]. The International Journal of Advanced Manufacturing Technology, 2019, 104(9-12):4039-4048.


 


[4]黄世军, 陈凌霄, 田洪才, . 型材滚弯回弹影响因素研究[J]. 塑性工程学报, 2017, 24(4): 117-123.


Huang S J, Chen L X, Tian H C , et al.  Study on the influential factors of profile roll bending springback[J]. Journal of Plasticity Engineering, 2017,24(4): 117-123.


 


[5]付泽民, 徐佳, 张锁怀, . 金属板材三辊滚弯成形解析建模与数值模拟[J]. 塑性工程学报, 2017, 24(2): 33-39.


Fu Z M, Xu J, Zhang S H, et al.  Analytical modeling and numerical simulation for three-roll bending of sheet metal[J]. Journal of Plasticity Engineering, 2017, 24(2):33-39.


 


[6]王安恒, 薛红前, 杨艳丽, . 基于中性层偏移的Z型材滚弯成形回弹预测[J]. 航空学报, 2019, 40(12): 423127.


Wang A H, Xue H Q, Yang Y L, et al. Spring back prediction for Z shaped profiles in roll bending process based on neutral layer shift[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(12): 423127.


 


[7]Wang A H, Xue H Q, Saud S, et al. Improvement of springback prediction accuracy for Z-section profiles in four-roll bending process considering neutral layer shift[J]. Journal of Manufacturing Processes, 2019, 48: 218-227.


 


[8]石祥. H型钢矫直模型的构建与工艺参数优化[D]. 重庆重庆理工大学, 2019.


Shi X.Construction of H Beam Straightening Model and Optimization of Process Parameters [D]. Chongqing: Chongqing University of Technology, 2019.


 


[9]张子骞, 颜云辉, 杨会林, . 平面应力下薄壁管材连续矫直压弯量力学模型与数值解法[J]. 计算力学学报, 2015, 32(2): 212-219.


Zhang Z Q, Yan Y H, Yang H L, et al. Numerical solution and mechanical modeling of the intermesh for continuous straightening a thin-walled tube in plane stress[J]. Chinese Journal of Computational Mechanics, 2015, 32(2): 212-219.


 


[10]王艳, 崔西民, 许光辉, . 三辊滚弯成形过程的回弹研究与试验分析[J]. 塑性工程学报, 2017, 24(5): 44-51.


Wang Y, Cui X M, Xu G H, et al. Research and experiment analysis on springback in three-roll bending process[J]. Journal of Plasticity Engineering, 2017, 24(5):44-51.


 


[11]Tran H, Champliaud H, Feng Z, et al. Analysis of the asymmetrical roll bending process through dynamic FE simulations and experimental study[J]. International Journal of Advanced Manufacturing Technology, 2014,75(5-8): 1233-1244.


 


[12]南文明. 型材滚弯在线曲率检测技术研究[D].秦皇岛:燕山大学,2021.


Nan W M. Research on On-line Curvature Detection Technology of Profile Roll Bend [D]. Qinhuangdao: Yanshan University, 2021.


 


[13]Salem J, Champliaud H, Feng Z, et al. Experimental analysis of an asymmetrical three-roll bending process[J]. The International Journal of Advanced Manufacturing Technology, 2016, 83(9): 1823-1833.


 


[14]Gandhi A H,  Raval H K. Analytical and empirical modeling of top roller position for three-roller cylindrical bending of plates and its experimental verification[J]. Journal of Materials Processing Technology, 2008,197(1): 268-278.


 


[15]Feng Z, Champliaud H. Modeling and simulation of asymmetrical three-roll bending process[J]. Simulation Modelling Practice and Theory, 2011, 19(9): 1913-1917.


 


[16]Ktari A, Antar Z, Haddar N, et al. Modeling and computation of the three-roller bending process of steel sheets[J]. Journal of Mechanical Science and Technology, 2012, 26(1): 123-128.


 


[17]Shin J, Lee J, Kim Y, et al. Mechanics-based determination of the center roller displacement in three-roll bending for smoothly curved rectangular plates[J]. KSME International Journal, 2001,15(12): 1655-1663.


 


[18]赖松柏,陈同祥,于登云.整体壁板填料辅助滚弯成形的动力显式分析方法[J]. 航天器工程, 2012, 21(3): 41-47.


Lai S B, Chen T X, Yu D Y. Dynamic explicit analysis method for roll bending forming of integrally stiffened panel with rubber filler [J]. Spacecraft Engineering, 2012, 21(3): 41-47.


 


[19]宋华, 谭志军, 黎朝琳, . 车身公差分配及蒙特卡洛模拟装配验证[J]. 四川兵工学报, 2014, 35(1):73-76.


Song H, Tan Z J, Li C L, et al. Tolerance allocation technique of BIW and validation by monte carlo simulation [J]. Journal of Sichuan Ordnance, 2014, 35(1):73-76.


 


[20]He Z, Zhu P F, Park S H. A robust desirability function method for multi-response surface optimization considering model uncertainty [J]. European Journal of Operational Research,2012, 221(1): 241-247.


 


[21]谢延敏. 基于动态Kriging模型的板料成形工艺稳健设计[J]. 西南交通大学学报, 2014,49(1): 160-164.


Xie Y M. Robust design of sheet forming process based on dynamic Kriging model[J]. Journal of Southwest Jiaotong University2014, 49(1): 160-164.


 


[22]Fyllingen , Hopperstada  O S, Lademoab O G,et al. Estimation of forming limit diagrams by the use of the finite element method and Monte Carlo simulation[J]. Computers and Structures, 2008, 87(1): 128-139.


 


[23]Navrat T, Petruska J. Eulerian description of rail straightening process[J]. Applied Mechanics and Materials, 2014, 624: 213-217.


 


[24]郑子君,王洪.模拟滚弯非稳态过程的虚拟载荷法[J].计算力学学报,2021,38(1):8-14.


Zheng Z J, Wang H. An artificial load method to simulate non-steady state of roll bending [J]. Chinese Journal of Computational Mechanics, 2021,38(1): 8-14.


 


[25]王勖成. 有限单元法[M].北京: 清华大学出版社,2003.


Wang X C. Finite Element Method[M]. Beijing: Tsinghua University Express,2003. 

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9