网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
基于响应面法的带交叉筋筒形零件热摆辗成形质量分析
英文标题:Quality analysis on hot orbital forming for cylindrical parts with cross ribs based on response surface method
作者:吴磊 冯玮 
单位:1.武汉理工大学 材料科学与工程学院 2.湖北省材料绿色精密成形工程技术研究中心 3. 现代汽车零部件技术湖北省重点实验室 
关键词:铝合金 交叉筋筒形零件 热摆辗成形 响应面模型 充填质量 折叠率 
分类号:TG306
出版年,卷(期):页码:2022,47(9):118-125
摘要:

 为了研究铝合金带交叉筋筒形零件热摆辗成形过程中交叉筋的几何参数对筋部充填不满、折叠等成形质量问题的影响规律,以交叉筋的宽度和高度为变量,采用Box-Behnke设计(BBD)方法进行了试验设计,利用有限元方法模拟了具有不同筋高和筋宽的筒形零件的热摆辗成形过程,计算了成形结束时不同筋高和筋宽时筋部的充填质量和折叠率,建立了以交叉筋的宽度和高度为设计变量, 以筋部的充填质量和折叠率为目标的二次多项式响应面模型。结合响应面模型和有限元方法,得到了不同筋宽和筋高下零件的成形质量,预测了成形质量最佳时交叉筋的高度和宽度,利用有限元对预测结果进行了模拟和验证。结果表明:当高筋的高宽比小于6时,筋部的充填质量较好;随着筋宽的增加,折叠率逐渐减小;优化后零件的筋部充填完整,折叠缺陷极少,模拟结果与预测结果一致,验证了响应面模型的准确性。

 In order to study the influence laws of geometric parameters for cross ribs on the forming quality problems of rib insufficient filling, folding and so on during the hot orbital forming process of aluminum alloy cylindrical part with cross ribs, taking the width and height of cross ribs as variables, the experimental design was carried out by Box-Behnke designing(BBD) method, and the hot orbital forming process of cylindrical parts with different rib widths and rib heights was simulated by the finite element method. Then, the filling quality and folding rate of ribs with different rib widths and rib heights at the end of forming were calculated, and taking the width and height of cross ribs as the design variables and the filling quality and folding rate of ribs as the objectives, a quadratic polynomial response surface model (RSM) was established. Furthermore, the forming quality of part with different rib width and rib heights was obtained by combining response surface model and finite element method, and the height and width of cross rib when the forming quality was the best were predicted, which were simulated and verified by finite element. The results show that the filling quality of ribs is better when the height-width ratio of high ribs is less than six, and the folding rate decreases gradually with the increasing of the rib width. After optimization, the ribs of part are filled fully, the fold defects are few, and the simulation results are consistent with the prediction results to verify the accuracy of the response surface model.

基金项目:
高等学校学科创新引智计划资助项目(B17034);教育部创新团队发展计划项目(IRT_17R83)
作者简介:
吴磊(1998-),男,硕士研究生 E-mail:leiwu@whut.edu.cn 通信作者:冯玮 (1973-),女,博士,副教授,硕士生导师 E-mail:fw7757@sina.com
参考文献:

 [1]王自启, 杨艳, 张杰, . 铝合金精密锻造技术研究及发展趋势[J]. 热加工工艺, 2019, 48(15):18-21.


 


Wang Z Q, Yang Y, Zhang J, et al. Research and development trend of precision forging technology for aluminum alloy[J]. Hot Working Technology, 2019, 48(15):18-21.


 


[2]李飞, 孔振, 杨力祥,. 镁合金电子舱体浇注系统设计与快速熔模铸造[J]. 航天制造技术, 2018,(2):6-10.


 


Li F, Kong Z, Yang L X, et al. Rapid investment casting process for electronic cabin of magnesium alloy based on 3D printing technology[J]. Aerospace Manufacturing Technology, 2018,(2):6-10.


 


[3]邵青, 何宇廷, 张腾, . 铝合金搅拌摩擦焊接加筋板剪切稳定性能研究[J]. 机械工程学报, 2014, 50(20):93-99.


 


Shao Q, He Y T, Zhang T, et al. Study on stability performance of friction stir welded aluminum alloy stiffened panel under shear load[J]. Journal of Mechanical Engineering, 2014, 50(20):93-99.


 


[4]冯驰骋. 薄壁网格筋构件摆辗成形工艺与机理研究[D]. 武汉:武汉理工大学, 2019.


 


Feng C C. Research on Technology and Mechanism of Rotary Forging for Components with Cross Ribs and Thin Webs[D]. Wuhan:Wuhan University of Technology, 2019.


 


[5]Zhuang W H, Han X H, Hua L, et al. Influences of key forging parameters on cold orbital forging of thin parts with high circular ribs [J]. Forming the Future, 2021, 1099-1105.


 


[6]Han X H, Hua L, Peng L, et al. An innovative radial envelope forming method for manufacturing thin-walled cylindrical ring with inner web ribs [J]. Journal of Materials Processing Technology, 2020, 286:116836.


 


[7]张侠, 成国发, 钱进浩. 汽车轮毂轴承单元摆辗铆接技术及有限元模拟分析[J]. 锻压技术, 2021, 46(5):151-157.


 


Zhang X, Cheng G F, Qian J H.Orbital riveting technology and finite element analysis of automotive hub bearing units[J]. Forging & Stamping Technology, 2021, 46(5):151-157.


 


[8]刘俊英. 基于正交试验的车用螺母成形分析及模具磨损优化[J]. 锻压技术, 2020, 45(2):182-187.


 


Liu J Y. Forming analysis and mould wear optimization on nuts for vehicle based on orthogonal test[J]. Forging & Stamping Technology2020,45(2): 182-187.


 


[9]高冲, 刘淑梅, 霍文军. 基于响应面法的铝合金连杆锻造工艺优化[J]. 热加工工艺, 2020, 49(11):97-100.


 


Gao C, Liu S M, Huo W J. Optimization of forging process for aluminum alloy connecting rods based on response surface method[J]. Hot Working Technology, 2020, 49(11):97-100.


 


[10]Ali A N, Huang S J. Ductile fracture behavior of ECAP deformed AZ61 magnesium alloy based on response surface methodology and finite element simulation[J]. Materials Science and Engineering: A, 2019, 746:197-210.


 


[11]Chen S W, Zhan M, Gao P F, et al. A new robust theoretical prediction model for flange wrinkling in conventional spinning[J]. Journal of Materials Processing Technology, 2021, 228:1-12.


 


[12]Balaji U, Pradhan S K. Titanium anodisation designed for surface colouration-systemisation of parametric interaction using response surface methodology[J]. Materials & Design, 2018, 139:409-418.


 


[13]Wei K, Zhan M, Fan X G, et al. Unequal-thickness billet optimization in transitional region during isothermal local loading forming of Ti-alloy rib-web component using response surface method[J]. Chinese Journal of Aeronautics, 2018, 3(14):845-859.


 


[14]王钊, 魏鑫, 黄瑶, . 基于响应面的汽车中立柱内板影响因素多目标优化[J]. 锻压技术, 2020, 45(7)46-50.


 


Wang Z, Wei X, Huang Y, et al. Multi-objective optimization on influencing factors for central pillar inner plate of automobile based on response surface[J]. Forging & Stamping Technology, 2020, 45(7):46-50.


 


[15]Guo L G, Dang L, Yang H, et al. Identification of processing window for extrusion of large thick-walled Inconel 625 alloy pipes using response surface methodology[J]. Transactions Nonferrous Metals Society of China, 2016, 26(7):1902-1911.


 


[16]Zhu X L, Liu D Y, Yang Y H, et al. Optimization on cooperative feed strategy for radial-axial ring rolling process of Inco718 alloy by RSM and FEM[J]. Chinese Journal of Aeronautics, 2016, 29(3):831-842.


 


[17]Chu Q, Li W Y, Yang X W, et al. Microstructure and mechanical optimization of probeless friction stir spot welded joint of an Al-Li alloy[J]. Journal of Materials Science & Technology,2018, 34(10):1739-1746.


 


[18]张猛, 胡亚民. 摆辗技术[M]. 1. 北京:机械工业出版社, 1998.


 


Zhang M, Hu Y M. Orbital Forging Technology [M]. 1st Edition. Beijing: China Machine Press, 1998.

服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9