[1]王自启, 杨艳, 张杰, 等. 铝合金精密锻造技术研究及发展趋势[J]. 热加工工艺, 2019, 48(15):18-21.
Wang Z Q, Yang Y, Zhang J, et al. Research and development trend of precision forging technology for aluminum alloy[J]. Hot Working Technology, 2019, 48(15):18-21.
[2]李飞, 孔振, 杨力祥,等. 镁合金电子舱体浇注系统设计与快速熔模铸造[J]. 航天制造技术, 2018,(2):6-10.
Li F, Kong Z, Yang L X, et al. Rapid investment casting process for electronic cabin of magnesium alloy based on 3D printing technology[J]. Aerospace Manufacturing Technology, 2018,(2):6-10.
[3]邵青, 何宇廷, 张腾, 等. 铝合金搅拌摩擦焊接加筋板剪切稳定性能研究[J]. 机械工程学报, 2014, 50(20):93-99.
Shao Q, He Y T, Zhang T, et al. Study on stability performance of friction stir welded aluminum alloy stiffened panel under shear load[J]. Journal of Mechanical Engineering, 2014, 50(20):93-99.
[4]冯驰骋. 薄壁网格筋构件摆辗成形工艺与机理研究[D]. 武汉:武汉理工大学, 2019.
Feng C C. Research on Technology and Mechanism of Rotary Forging for Components with Cross Ribs and Thin Webs[D]. Wuhan:Wuhan University of Technology, 2019.
[5]Zhuang W H, Han X H, Hua L, et al. Influences of key forging parameters on cold orbital forging of thin parts with high circular ribs [J]. Forming the Future, 2021, 1099-1105.
[6]Han X H, Hua L, Peng L, et al. An innovative radial envelope forming method for manufacturing thin-walled cylindrical ring with inner web ribs [J]. Journal of Materials Processing Technology, 2020, 286:116836.
[7]张侠, 成国发, 钱进浩. 汽车轮毂轴承单元摆辗铆接技术及有限元模拟分析[J]. 锻压技术, 2021, 46(5):151-157.
Zhang X, Cheng G F, Qian J H.Orbital riveting technology and finite element analysis of automotive hub bearing units[J]. Forging & Stamping Technology, 2021, 46(5):151-157.
[8]刘俊英. 基于正交试验的车用螺母成形分析及模具磨损优化[J]. 锻压技术, 2020, 45(2):182-187.
Liu J Y. Forming analysis and mould wear optimization on nuts for vehicle based on orthogonal test[J]. Forging & Stamping Technology,2020,45(2): 182-187.
[9]高冲, 刘淑梅, 霍文军. 基于响应面法的铝合金连杆锻造工艺优化[J]. 热加工工艺, 2020, 49(11):97-100.
Gao C, Liu S M, Huo W J. Optimization of forging process for aluminum alloy connecting rods based on response surface method[J]. Hot Working Technology, 2020, 49(11):97-100.
[10]Ali A N, Huang S J. Ductile fracture behavior of ECAP deformed AZ61 magnesium alloy based on response surface methodology and finite element simulation[J]. Materials Science and Engineering: A, 2019, 746:197-210.
[11]Chen S W, Zhan M, Gao P F, et al. A new robust theoretical prediction model for flange wrinkling in conventional spinning[J]. Journal of Materials Processing Technology, 2021, 228:1-12.
[12]Balaji U, Pradhan S K. Titanium anodisation designed for surface colouration-systemisation of parametric interaction using response surface methodology[J]. Materials & Design, 2018, 139:409-418.
[13]Wei K, Zhan M, Fan X G, et al. Unequal-thickness billet optimization in transitional region during isothermal local loading forming of Ti-alloy rib-web component using response surface method[J]. Chinese Journal of Aeronautics, 2018, 3(14):845-859.
[14]王钊, 魏鑫, 黄瑶, 等. 基于响应面的汽车中立柱内板影响因素多目标优化[J]. 锻压技术, 2020, 45(7):46-50.
Wang Z, Wei X, Huang Y, et al. Multi-objective optimization on influencing factors for central pillar inner plate of automobile based on response surface[J]. Forging & Stamping Technology, 2020, 45(7):46-50.
[15]Guo L G, Dang L, Yang H, et al. Identification of processing window for extrusion of large thick-walled Inconel 625 alloy pipes using response surface methodology[J]. Transactions Nonferrous Metals Society of China, 2016, 26(7):1902-1911.
[16]Zhu X L, Liu D Y, Yang Y H, et al. Optimization on cooperative feed strategy for radial-axial ring rolling process of Inco718 alloy by RSM and FEM[J]. Chinese Journal of Aeronautics, 2016, 29(3):831-842.
[17]Chu Q, Li W Y, Yang X W, et al. Microstructure and mechanical optimization of probeless friction stir spot welded joint of an Al-Li alloy[J]. Journal of Materials Science & Technology,2018, 34(10):1739-1746.
[18]张猛, 胡亚民. 摆辗技术[M]. 1版. 北京:机械工业出版社, 1998.
Zhang M, Hu Y M. Orbital Forging Technology [M]. 1st Edition. Beijing: China Machine Press, 1998.
|