网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
基于响应面法的异形截面环件轧制宏观成形缺陷的分析与优化
英文标题:Analysis and optimization on acroscopic forming defect for profiled section ring rolling based on response surface method
作者:马君慧 吴运新  龚海 张涛 郝铁文 刘磊 
单位:1. 中南大学 机电工程学院 2.中南大学 高性能复杂制造国家重点实验室 3. 中南大学 轻合金研究院 4.一重集团大连工程技术有限公司 
关键词:成形缺陷 不对称异形截面 环件轧制 响应面模型 毛坯角度优化 
分类号:TG335
出版年,卷(期):页码:2022,47(9):135-143
摘要:

 缺肉是异形截面环件在轧制过程中容易产生的成形缺陷问题,缺肉程度与异形截面环件几何参数的关联关系十分复杂。建立2219铝合金不对称异形截面环件轧制的数值模型,分析了异形截面环件槽型深度和槽型角度对环件成形质量的影响,通过分析缺肉缺陷的形成机理,提出采用优化毛坯尺寸参数的方式来抑制缺陷。基于响应面法,以槽型深度、槽型角度和毛坯角度为设计变量,以缺肉系数为设计目标,建立了表征缺肉系数的响应面模型,并对该模型进行了回归检验。结果表明,槽型深度越大、槽型角度越小,越容易产生成形缺陷。利用建立的响应面模型对目标槽型深度为45 mm、槽型角度为70°的环件的毛坯角度进行了优化,结果显示优化后的毛坯较好地抑制了缺肉缺陷。

 Insufficient filling is a problem of forming defects that are easily generated during the rolling process for profiled section rings, and the relationship between the degree of insufficient filling and the geometric parameters of profiled section rings is very complicated. Therefore, the numerical model of asymmetric profiled section ring rolling for 2219 aluminum alloy was established, and the influences of groove depth and groove angle of profiled section ring on the forming quality of ring were analyzed. Then, by analyzing the forming mechanism of insufficient filling defects, the method of optimizing blank size parameters was proposed to suppress the defects. Furthermore, based on the response surface method, taking groove depth, groove angle and blank angle as the design variables and the insufficient filling coefficient as the design goal, the response surface model to characterize the insufficient filling coefficient was established, and the regression test was carried out. The results show that the larger the groove depth is and the smaller the groove angle is, the easier it is to produce forming defects. Using the established response surface model, the blank angle of ring with the target groove depth of 45 mm and the groove angle of 70° is optimized. The result shows that the optimized blank can better suppress the insufficient filling defects.

基金项目:
民用航天预研项目(B0109);高性能复杂制造国家重点实验室自主研究课题(ZZYJKT2021-05);黑龙江省重点研发计划项目(GA21D003)
作者简介:
马君慧(1997-),女,硕士研究生 E-mail:junhuim_nov17@foxmail.com 通信作者:吴运新(1963-),男,博士,教授,博士生导师 E-mail:wuyunxin@csu.edu.cn
参考文献:

 [1]倪江涛, 张文学. 锻造技术在航天运载器中的应用及展望[J]. 航天制造技术, 2019(5): 61-6570.


 


Ni J T, Zhang W X. Application and development prospects of forging technology in aerospace vwhicle[J]. Aerospace Manufacturing Technology, 2019(5): 61-6570.


 


[2]王敏, 张春. 大型环件热辗扩成形宽展的工艺因素效应研究[J]. 热加工工艺, 2012, 41(7): 4-7.


 


Wang M, Zhang C. Effects of process factors on spread in hot rolling of large ring [J]. Hot Working Technology, 2012, 41(7): 4-7.


 


[3]钱东升. 异形截面环件冷轧力学原理和工艺理论研究[M]. 武汉:武汉理工大学出版社, 2012.


 


Qian D S. Study on the Mechanics Principle and Process Theory of Cold Rolling of Special-shaped Cross Section [M]. Wuhan: Wuhan University of Technology Press, 2012.


 


[4]Jenkouk V, Hirt G, Franzke M. Finite element analysis of the ring rolling process with integrated closed-loop control [J]. CIRP Annals-Manufacturing Technology, 2012, 61 (1):267-270.


 


[5]谢亚琳. T形环件约束轧制成形工艺研究[D]. 武汉:武汉理工大学, 2019.


 


Xie Y L. Research on Constrained Profile Ring Rolling of T-shaped Ring[D]. Wuhan: Wuhan University of Technology, 2019.


 


[6]陈菲. IN718高温合金异形环件轧制坯料设计及进给策略研究[D]. 重庆:重庆大学,2018.


Chen F. Research on Ring Billet and Feeding Strategy Design for Profile Ring Rolling of IN718 Super Alloy[D]. Chongqing: Chongqing University, 2018.


 


[7]Kang B S, Kobayashi S. Preform design in ring rolling processes by the three-dimensional finite element method [J]. International Journal of Machine Tools & Manufacture, 1991, 31(1):139-151.


 


[8]Li Y O, Tae W H, Young Y W, et al. Analysis of defects in L-section profile ring rolling[J]. Procedia Manufacturing, 2018, 15: 81-88.


 


[9]宋亚东, 曾旭东, 钱东升. 环件径轴向轧制中轴向爬升机制与抑制方法研究[J]. 中国机械工程, 2013, 24(12): 1665-1670.


 


Song Y D, Zeng X D, Qian D S. Research on mechanism and suppression method of axial climbing in radial-axial ring rolling[J]. China Mechanical Engineering, 2013, 24(12): 1665-1670.


 


[10]Xie C, Dong X, Li S, et al. Rigid-viscoplastic dynamic explicit FEA of the ring rolling process[J]. International Journal of Machine Tools & Manufacture, 2000, 40(1): 81-93.


 


[11]王凯, 吴运新, 龚海, . 2219铝合金高温塑性变形应变补偿的本构模型[J]. 热加工工艺, 2019, 49(9): 120-124.


 


Wang K, Wu Y X, Gong H, et al. Strain-compensated constitutive model for high temperature plastic deformation of 2219 aluminum alloy [J]. Hot Working Technology, 2019, 49(9): 120-124.


 


[12]华林, 黄兴高, 朱春东. 环件轧制理论和技术[M]. 北京:机械工业出版社,2001.


 


Hua L, Huang X G, Zhu C D. Ring Rolling Theory and Technology [M]. Beijing: China Machine Press,2001.


 


[13]Abdolhossein Sadrnia, Yasin Orooji, Ali Behmaneshfar, et al. Developing a simple box-behnken experimental design on the removal of doxorubicin anticancer drug using Fe3O4/graphene nanoribbons adsorbent[J]. Environmental Research, 2021, 200: 111522.


 


[14]Amine Nekkaa, Akila Benaissa,Lalaouna Abd E D, et al. Optimization of the extraction process of bioactive compounds from Rhamnus alaternus leaves using Box-Behnken experimental design [J]. Journal of Applied Research on Medicinal and Aromatic Plants,2021,25:100345.


 


[15]蔡正祥. 响应面法在机械结构优化问题上的应用研究[D]. 上海:上海海洋大学,2019.


 


Cai Z X. Application of Response Methodology in Mechanical Structural Optimization[D]. Shanghai: Shanghai Ocean University,2019.


 


[16]岳炯, 于存贵, 汪国梁,. 基于响应面法的某火箭炮结构参数优化[J]. 兵工自动化, 2015, 34(9): 83-86.


 


Yue J, Yu C G, Wang G L, et al. Structural parameters optimization of MLRS based on response surface method[J]. Ordnance Industry Automation, 2015, 34(9): 83-86.


 


[17]徐向宏, 何明珠. 试验设计与Design-ExpertSPSS应用[M]. 北京:科学出版社,2010.


 


Xu X H, He M Z. Experiment Design and Design-Expert, SPSS Application[M]. Beijing: Science Press,2010.

服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9