网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
3D-SPD制备45钢棒材的热处理工艺
英文标题:Heat treatment process on 45 steel bar prepared by 3D-SPD
作者:王航舵 庞玉华 孙琦 刘东 张喆 
单位:1.西安建筑科技大学 冶金工程学院 2.西安建筑科技大学 陕西省冶金工程技术研究中心 3.西北工业大学 材料学院 
关键词:压扭复合变形 超细晶 热处理 显微组织 力学性能 
分类号:TG156;TG142.2
出版年,卷(期):页码:2022,47(9):203-210
摘要:

 针对单道次剧烈压扭复合3D-SPD轧制获得的45钢Φ25 mm超细晶棒材的塑性发生下降的问题,采用退火、回火、正火及亚温淬火4种热处理方式处理,研究了不同热处理方式对棒材组织及力学性能的影响规律。研究结果表明:回火和退火处理后渗碳体均发生了分布均匀的球化,颗粒尺寸随着温度升高而增大,颗粒尺寸可细化至400 nm;正火处理后,珠光体团的尺寸和片层渗碳体的间距随着温度升高逐渐增大;亚温淬火处理后获得了弥散分布的岛状马氏体组织,马氏体的体积分数随着保温时间的延长逐渐增加。退火、回火以及正火后,材料的塑性均得到了明显的改善,其中,在600 ℃回火后,材料的抗拉强度和伸长率为785 MPa和23.9%,塑性提高约38%,具有最优的强度和塑性匹配效果。

 For the problem of plasticity decrease for Φ25 mm ultrafine grained bar of 45 steel obtained by single-pass intense compression-torsion composite 3D-SPD rolling, the influence laws of different heat treatment methods on the microstructure and mechanical properties for bar were investigated by four heat treatment methods of annealing, tempering, normalizing and sub-temperature quenching. The results show that after tempering and annealing, the cementite is spheroidized with uniform distribution, the size of particle increases with the increasing of temperature, and the particle size is refined to 400 nm. After normalizing treatment, the size of pearlite clusters and the spacing of lamellar cementite gradually increase with the increasing of temperature. After sub-temperature quenching treatment, dispersing island martensite structure is obtained, and the volume fraction of martensite gradually increases with prolonging of holding time. After annealing, tempering and normalizing, the plasticity of material is obviously improved, after tempering at 600 , the tensile strength and elongation of material are 785 MPa and 23.9% respectively, and the plasticity is increased by about 38%, which shows the best matching effect between strength and plasticity.

基金项目:
陕西省重点研发计划项目(2020GY-253)
作者简介:
作者简介:王航舵(1996-),男,硕士研究生 E-mail:1651786202@qq.com 通信作者:庞玉华(1965-),女,博士,教授 E-mail:pyhyyl@126.com
参考文献:

 [1]Segal V M. Materials processing by simple shear[J]. Materials Science & Engineering A,1995,197(2):157-164.


 


[2]Valiev R Z, Zhilyaev A P, Langdon T G. Bulk Nanostructured Materials: Fundamental and Applications[M]. John Wiley & Sons, Inc.2013.


 


[3]Saito Y, Utsunomiya H, Tsuji N, et al. Novel ultra-high straining process for bulk materials-Development of the accumulative roll-bonding (ARB) process [J]. Acta Materialia, 1999, 47(2):579 -583.


 


[4]Estrin Y, Vinogradov A. Extreme grain refinement by severe plastic deformation: A wealth of challenging science[J]. Acta Materialia,2013,61(3):782-817.


 


[5]Aleksey R, Roman K, Alexander K, et al. The occurrence of ideal plastic state in CP titanium processed by twist extrusion[J]. Advanced Engineering Materials,2018,20(5):3-8.


 


[6]Liu X H, Xiao L, Wei C H, et al. Effect of multi-directional forging and annealing on abrasive wear behavior in a medium carbon low alloy steel[J]. Tribology International,2018,119(1):608-613.


 


[7]Song M, Zhu R, Foley D C, et al. Enhancement of strength and ductility in ultrafine-grained T91 steel through thermomechanical treatments[J]. Journal of Materials Science,2013,48(21):7360-7373.


 


[8]Prasad C, Bhuyan P, Kaithwas C, et al. Microstructure engineering by dispersing nano-spheroid cementite in ultrafine-grained ferrite and its implications on strength-ductility relationship in high carbon steel[J]. Materials and Design, 2017, 139:324-335.


 


[9]Dong H S, Park K T. Ultrafine grained steels processed by equal channel angular pressing[J]. Materials Science & Engineering A, 2005, 410:299-302.


 


[10]Wang Y M, Chen M W, Zhou F H, et al. High tensile ductility in a nanostructured metal[J].Nature,2002,419 (6910):912-915.


 


[11]Liang J W, Shen Y F, Zhang C S,et al. In situ neutron diffraction in quantifying deformation behaviors of nano-sized carbide strengthened UFG ferritic steel[J]. Materials Science & Engineering A,2018,726:298-308.


 


[12]Jia N, Shen Y F, Liang J W, et al. Nanoscale spheroidized cementite induced ultrahigh strength-ductility combination in innovatively processed ultrafine-grained low alloy medium-carbon steel[J]. Scientific reports,2017,7(1):2679-2688.


 


[13]Park K T, Han S Y, Ahn B D, et al. Ultrafine grained dual phase steel fabricated by equal channel angular pressing and subsequent intercritical annealing[J]. Scripta Materialia,2004,51(9):909-913.


 


[14]庞玉华,林鹏程,康荻娜,. 一种大尺寸45钢超细晶棒材的等距螺旋轧制方法[P].中国:CN108480397A, 2018-09-04.


 


Pang Y H, Lin P C, Kang D N,et al. An equidistant spiral rolling method for large size 45 steel ultrafine grained bar[P]. ChinaCN108480397A, 2018-09-04.


 


[15]刘东, 庞玉华, 陶镳. 一种F+P型非调质钢的3D-SPD超细晶棒材成形方法[P]. 中国:CN112044952A, 2020-12-08.


 


Liu D, Pang Y H, Tao B. A 3D-SPD ultrafine grained bar forming method of F+P type non-quenched and tempered steel[P]. ChinaCN112044952A, 2020-12-08.


 


[16]林鹏程,庞玉华,孙琦,.45钢块体超细晶棒材3D-SPD轧制法[J].金属学报,2021,57(5):605-612.


 


Lin P C, Pang Y H, Sun Q, et al.3D-SPD rolling method of 45 steel ultrafine grain bar with bulk size [J].Acta Metallurgica Sinica,2021,57(5):605-612.


 


[17]GB/T 228.12021, 金属材料 拉伸试验 1部分:室温试验方法[S].


 


GB/T 228.12021, Metallic materialsTensile testingPart 1: Method of test at room temperature[S].


 


 


[18]张馨月,杨明维,冯运莉,.退火时间对伪共析45钢温轧后组织与性能的影响[J].金属热处理,2020,45(4):132-136.


 


Zhang X Y, Yang M W, Feng Y L, et al. Effect of annealing time on microstructure and properties of pseudo eutectoid 45 steel after warm rolling [J]. Heat Treatment of Meatals, 2020,45 (4): 132-136.


 


[19]王燕,方峰,王雷,.冷拔珠光体钢丝渗碳体微观结构[J].材料热处理学报,2010,31(5):92-95.


 


Wang Y, Fang F, Wang L, et al. Microstructure of cementite in cold drawn pearlite steel wire [J]. Transactions of Materials and Heat Treatment, 2010,31(5): 92-95.


 


[20]Akhmad A K, Mutoh Y, Miyashita Y, et al. Effects of pearlite morphology and specimen thickness on fatigue crack growth resistance in ferritic-pearlitic steels[J].Materials Science & Engineering A,2006,428(1):262-269.


 


[21]Calcagnotto M, Ponge D, Raabe D.Microstructure control during fabrication of ultrafine grained dual-phase steel: Characterization and effect of intercritical annealing parameters[J]. Isij International, 2012, 52(5):874-883.


 


[22]Petch N J. The cleavage strength of polycrystals[J]. Journal of the Iron & Steel Institute, 1953,174(1):25-28.


 


[23]Duan J, Wen H, Zhou C, et al. Annealing behavior in a high-pressure torsion-processed Fe-9Cr steel[J]. Journal of Materials Science, 2020, 55(18):7958-7968.


 


[24]Gazder A A, Hazra S S, Pereloma E V.Annealing behaviour and mechanical properties of severely deformed interstitial free steel[J]. Materials Science & Engineering A, 2011, 530(1):492-503.


 


[25]Song R, Ponge D, Raabe D, et al. Microstructure and crystallographic texture of an ultrafine grained C-Mn steel and their evolution during warm deformation and annealing[J]. Acta Materialia, 2005, 53(3):845-858.


 


[26]Park S H, Lee T, Kim S H, et al. Effects of drawing strain and post-annealing conditions on microstructural evolution and tensile properties of medium- and high-carbon steels[J]. Metals and Materials International, 2017, 23(6):1176-1187.


 


[27]Karmakar A, Bhattacharya A, Karani A, et al. Processing of ultrafine-grained steels by warm rolling and annealing[J]. Journal of Materials Engineering and Performance, 2019,25(2):753-768.


 


[28]Marion C, Dirk P, Dierk R. Microstructure control during fabrication of ultrafine grained dual-phase steel: Characterization and effect of intercritical annealing parameters[J]. ISIJ International,2012,52(5):874-883.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9