[1]杜劭峰, 赵文军, 洪振军. 17Cr2Ni2MoVNb和20Cr2Ni4A钢齿轮渗碳质量与弯曲疲劳寿命的试验研究[J]. 金属热处理, 2014,39(7):12-18.
Du S F, Zhao W J, Hong Z J. Carburizing quality and bending fatigue life of 17Cr2Ni2MoVNb and 20Cr2Ni4A steel gears[J]. Heat Treatment of Metals,2014,39 (7):12-18.
[2]伦建伟, 刘伟, 杨洋, 等. 35CrMoV钢高温塑性变形行为及其本构方程建立[J]. 锻压技术, 2021, 46(3): 216-220.
Lun J W,Liu W,Yang Y, et al. High temperature plastic deformation behavior and constitutive equation establishment of 35CrMoV steel[J]. Forging & Stamping Technology, 2021, 46(3): 216-220.
[3]张文汉. V-Nb微合金化齿轮钢及其热处理工艺和力学性能的研究[D]. 武汉:武汉科技大学, 2007.
Zhang W H. A Study on Fabrication,Heat-treatments and Mechanical Properties of V-Nb Microalloyed Gear Steel [D]. Wuhan: Wuhan University of Science and Technology, 2007.
[4]周洪刚, 朱旭, 刘克,等. 17Cr2Ni2MoVNb钢的渗碳淬火工艺[J]. 金属热处理, 2019, 44(10): 117-121.
Zhou H G, Zhu X, Liu K,et al. Carburizing and quenching process of 17Cr2Ni2MoVNb steel [J]. Heat Treatment of Metals, 2019, 44(10): 117-121.
[5]马潇, 徐乐,王毛球,等. 25Cr3Mo3NiNbZr钢热变形行为及微观组织研究[J].热加工工艺, 2019,48(19):23-29.
Ma X, Xu L, Wang M Q,et al . Study on hot deformation behavior and microstructure of 25Cr3Mo3NiNbZr steel[J]. Hot Working Technology, 2019,48(19):23-29.
[6]Prasad Y V R K, Seshacharyulu T. Modelling of hot deformation for microstructural control[J]. International Materials Reviews, Taylor & Francis, 1998, 43(6): 243-258.
[7]Poliak E I, Jonas J J. A one-parameter approach to determining the critical conditions for the initiation of dynamic recrystallization[J]. Acta Materialia, 1996, 44(1): 127-136.
[8]Jonas J J, Quelennec X, Lan J, et al. The Avrami kinetics of dynamic recrystallization[J]. Acta Materialia, 2009, 57(9):2748-2756.
[9]Moreira A, Junior J, Balancin O. Prediction of steel flow stresses under hot working conditions[J]. Materials Research, 2005, 8(3):309-315.
[10]Thomas Schambron, Chen L, Taliah Gooch, et al. Effect of Mo concentration on dynamic recrystallization behavior of low carbon microalloyed steels[J]. Steel Research International, 2013, 84(12):1191-1195.
[11]Mejía I, Salas-Reyes A E, Bedolla-Jacuinde A. Effect of Nb and Mo on the hot ductility behavior of a high-manganese austenitic Fe-21Mn-1.3Al-1.5Si-0.5C TWIP steel[J]. Materials Science and Engineering: A, 2014, 616: 229-239.
[12]赵嫚嫚, 秦森, 冯捷,等. Al、Ni对1Cr9Al(1~3)Ni(1~7)WVNbB钢热变形行为的影响[J]. 金属学报, 2020, 56(7): 960-968.
Zhao M M, Qin S, Feng J, et.al. Effect of Al and Ni on hot deformation behavior of 1Cr9Al(1~3)Ni(1~7)WVNbB steel[J]. Acta Metallurgica Sinica, 2020, 56(7): 960-968.
[13]Medina S F, Hernandez C A. General expression of the Zener-Hollomon parameter as a function of the chemical composition of low alloy and microalloyed steels[J]. Acta Materialia, 1996, 44(1): 137-148.
[14]Zener C, Hollomon J H. Effect of strain rate upon plastic flow of steel[J]. Journal of Applied Physics, 1944, 15(1):22-32.
[15]Seok M Y, Choi I C, Zhao Y, et al. Microalloying effect on the activation energy of hot deformation[J]. Steel Research International, 2015, 86(7):817-820.
[16]Cao Y, Xiao F, Qiao G, et al. Quantitative research on effects of Nb on hot deformation behaviors of high-Nb microalloyed steels[J]. Materials Science and Engineering: A, 2011, 530: 277-284.
[17]Mannan P, Kostryzhev A G, Zurob H, et al. Hot deformation behaviour of Ni-30Fe-C and Ni-30Fe-Nb-C model alloys[J]. Materials Science and Engineering: A, 2015, 641: 160-171.
|