网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
17Cr2Ni2MoVNb和20Cr2Ni4A齿轮钢的热变形行为
英文标题:Thermal deformation behavior of 17Cr2Ni2MoVNb and 20Cr2Ni4A gear steels
作者:董明振 闫永明 欧阳雪枚 袁伍丰 阳仁奇 杨少朋 
单位:1.湘潭大学 材料科学与工程学院 2.钢铁研究总院 特殊钢研究所 3.江麓机电集团有限公司 4.马鞍山钢铁股份有限公司 技术中心 
关键词:齿轮钢 高温变形 热变形激活能 Zener-Hollomon参数 动态再结晶 
分类号:TG142
出版年,卷(期):页码:2022,47(9):230-237
摘要:

 利用Gleeble-3800热模拟试验机,研究了17Cr2Ni2MoVNb20Cr2Ni4A齿轮钢的热变形行为。利用加工硬化曲线,计算了两种齿轮钢的热变形激活能,构建了本构方程。结果表明:两种齿轮钢在低应变速率下,均表现出明显的动态再结晶;而在高应变速率下,20Cr2Ni4A钢在1000 ℃时表现为动态回复,而17Cr2Ni2MoVNb钢在10001150 ℃时均表现为动态回复。在相同变形条件下,17Cr2Ni2MoVNb钢的峰值应力和临界应力均高于20Cr2Ni4A钢;20Cr2Ni4A钢和17Cr2Ni2MoVNb钢的热变形激活能分别为324374 kJ·mol-1。两种齿轮钢之间的应力特征值和热变形激活能之间的差异主要是由于NiMoNb元素的含量差异对动态再结晶有不同程度的影响而导致的。在低应变速率下,两种齿轮钢可选的变形温度相同;在高应变速率下,17Cr2Ni2MoVNb钢的加工温度选择可高于20Cr2Ni4A钢的加工温度100 ℃以上的温度。

 The thermal deformation behavior of 17Cr2Ni2MoVNb and 20Cr2Ni4A gear steels were studied by Gleeble-3800 thermal simulation test machine, respectively, and the thermal deformation activation energy for the two kinds of gear steels was calculated to construct the constitutive equation by the work hardening curves. The results show that the two kinds of gear steels exhibit obvious dynamic recrystallization at low strain rate, while at high strain rate, 20Cr2Ni4A steel exhibits dynamic recovery at 1000 and 17Cr2Ni2MoVNb steel exhibits dynamic recovery at 1000-1150 . Under the same deformation conditions, the peak stress and critical stress of 17Cr2Ni2MoVNb steel are higher than those of 20Cr2Ni4A steel, and the thermal deformation activation energy of 17Cr2Ni2MoVNb and 20Cr2Ni4A steels are 374 and 324 kJ·mol-1, respectively. The difference between the stress characteristic values and the thermal deformation activation energy between the two kinds of gear steels is mainly due to the different contents of Ni, Mo and Nb, which have different effects on dynamic recrystallization. At low strain rate, the optional deformation temperature for the two kinds of gear steels is the same, while at high strain rate, the processing temperature of 17Cr2Ni2MoVNb steel can be selected to be more than 100 higher than that of 20Cr2Ni4A steel.

 

基金项目:
国家重点专项(20T60860B)
作者简介:
董明振(1996-),男,硕士研究生 E-mail:dongmz0126@163.com 通信作者:闫永明(1986-),男,博士,高级工程师 E-mail:yanyongming@nercast.com
参考文献:

 [1]杜劭峰, 赵文军, 洪振军. 17Cr2Ni2MoVNb20Cr2Ni4A钢齿轮渗碳质量与弯曲疲劳寿命的试验研究[J]. 金属热处理, 201439(7):12-18.


 


Du S F, Zhao W J, Hong Z J. Carburizing quality and bending fatigue life of 17Cr2Ni2MoVNb and 20Cr2Ni4A steel gears[J]. Heat Treatment of Metals201439 (7):12-18.


 


[2]伦建伟, 刘伟, 杨洋, . 35CrMoV钢高温塑性变形行为及其本构方程建立[J]. 锻压技术, 2021, 46(3): 216-220.


 


Lun J W,Liu W,Yang Y, et al. High temperature plastic deformation behavior and constitutive equation establishment of 35CrMoV steel[J]. Forging Stamping Technology, 2021, 46(3): 216-220.


 


[3]张文汉. V-Nb微合金化齿轮钢及其热处理工艺和力学性能的研究[D]. 武汉:武汉科技大学, 2007.


 


Zhang W H. A Study on FabricationHeat-treatments and Mechanical Properties of V-Nb Microalloyed Gear Steel [D]. Wuhan: Wuhan University of Science and Technology, 2007.


 


[4]周洪刚, 朱旭, 刘克,等. 17Cr2Ni2MoVNb钢的渗碳淬火工艺[J]. 金属热处理, 2019, 44(10): 117-121.


 


Zhou H G, Zhu X, Liu Ket al. Carburizing and quenching process of 17Cr2Ni2MoVNb steel [J]. Heat Treatment of Metals, 2019, 44(10): 117-121.


 


[5]马潇, 徐乐,王毛球,. 25Cr3Mo3NiNbZr钢热变形行为及微观组织研究[J].热加工工艺, 2019,48(19):23-29.


 


Ma X, Xu L, Wang M Qet al . Study on hot deformation behavior and microstructure of 25Cr3Mo3NiNbZr steel[J]. Hot Working Technology, 2019,48(19):23-29.


 


[6]Prasad Y V R K, Seshacharyulu T. Modelling of hot deformation for microstructural control[J]. International Materials Reviews, Taylor & Francis, 1998, 43(6): 243-258.


 


[7]Poliak E I, Jonas J J. A one-parameter approach to determining the critical conditions for the initiation of dynamic recrystallization[J]. Acta Materialia, 1996, 44(1): 127-136.


 


[8]Jonas J J, Quelennec X, Lan J, et al. The Avrami kinetics of dynamic recrystallization[J]. Acta Materialia, 2009, 57(9):2748-2756.


 


[9]Moreira A, Junior J, Balancin O. Prediction of steel flow stresses under hot working conditions[J]. Materials Research, 2005, 8(3):309-315.


 


[10]Thomas Schambron, Chen L, Taliah Gooch, et al. Effect of Mo concentration on dynamic recrystallization behavior of low carbon microalloyed steels[J]. Steel Research International, 2013, 84(12):1191-1195.


 


[11]Mejía I, Salas-Reyes A E, Bedolla-Jacuinde A. Effect of Nb and Mo on the hot ductility behavior of a high-manganese austenitic Fe-21Mn-1.3Al-1.5Si-0.5C TWIP steel[J]. Materials Science and Engineering: A, 2014, 616: 229-239.


 


[12]赵嫚嫚, 秦森, 冯捷,. AlNi1Cr9Al(13)Ni(17)WVNbB钢热变形行为的影响[J]. 金属学报, 2020, 56(7): 960-968.


 


Zhao M M, Qin S, Feng J, et.al. Effect of Al and Ni on hot deformation behavior of 1Cr9Al(13)Ni(17)WVNbB steel[J]. Acta Metallurgica Sinica, 2020, 56(7): 960-968.


 


[13]Medina S F, Hernandez C A. General expression of the Zener-Hollomon parameter as a function of the chemical composition of low alloy and microalloyed steels[J]. Acta Materialia, 1996, 44(1): 137-148.


 


[14]Zener C, Hollomon J H. Effect of strain rate upon plastic flow of steel[J]. Journal of Applied Physics, 1944, 15(1):22-32.


 


[15]Seok M Y, Choi I C, Zhao Y, et al. Microalloying effect on the activation energy of hot deformation[J]. Steel Research International, 2015, 86(7):817-820.


 


[16]Cao Y, Xiao F, Qiao G, et al. Quantitative research on effects of Nb on hot deformation behaviors of high-Nb microalloyed steels[J]. Materials Science and Engineering: A, 2011, 530: 277-284.


 


[17]Mannan P, Kostryzhev A G, Zurob H, et al. Hot deformation behaviour of Ni-30Fe-C and Ni-30Fe-Nb-C model alloys[J]. Materials Science and Engineering: A, 2015, 641: 160-171.

服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9