网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
镁锂合金多向压缩的组织演变及力学性能
英文标题:Microstructure evolution and mechanical properties on Mg-Li alloy in multiaxial compression
作者:朱嵩琦 张金龙 沈辉 张祺铭 徐强 杨洪召 郭沁 
单位:1. 西安航空学院 材料工程学院 2. 航空工业西安飞机工业(集团)有限责任公司 
关键词:镁锂合金  多向压缩  大塑性变形  显微组织  力学性能 
分类号:TG302
出版年,卷(期):页码:2022,47(9):250-255
摘要:

 利用OMSEMXRD表征了室温多向压缩镁锂合金的显微组织,分析了多向压缩变形过程中的组织演变及力学性能变化。结果表明:镁锂合金由α-Mg、β-Li、纤维状Mg17Al12、颗粒状MgLiAl2和球形AlLi 5相组成。压缩时β-Li相首先产生滑移并形成位错塞积,晶界被突破后逐渐消失,累计应变的增长触发α-Mg相滑移面开动,α-Mg相和β-Li相在相界面处不断融合,甚至融为一体。Mg17Al12相被分割为短纤维或小颗粒,MgLiAl2相逐渐失去平直排列,最终均匀分布在β-Li相内部。硬度随着变形程度的增大而升高,初期和后期比较显著,中间阶段较为平缓,累积应变达到15.8时,硬度提升了19.8%。镁锂合金形变强化的同时其伸长率也大幅提高,累积应变为6.22时,合金的抗拉强度提高了35%,伸长率提高了82%

 The microstructure of multiaxial compression for Mg-Li alloy at room temperature was characterized by OM, SEM and XRD, and the evolution of microstructure and the change of mechanical properties during multiaxial compression deformation process were analyzed. The results show that Mg-Li alloy is composed of five phases of α-Mg, β-Li, fibrous Mg17Al12, granular MgLiAl2 and spherical AlLi. During compression, β-Li phase first produces slip and forms dislocation plugging, and the grain boundary is broken through and gradually disappears, the increasing of cumulative strain triggers the activation of α-Mg phase slip surface, and α-Mg phase and β-Li phase are continuously fused at the phase interface, even integrated. Mg17Al12 phase is divided into short fibers or small particles, and MgLiAl2 phase gradually loses its straight arrangement and is finally evenly distributed in β-Li phase. The hardness increases with the increasing of deformation degree, which is significant in the initial and later stages, and gentle in the middle stage. When the cumulative strain reaches 15.8, the hardness increases by 19.8%. The elongation of Mg-Li alloy can also be greatly improved while the deformation is strengthened. When the cumulative strain is 6.22, the tensile strength of the alloy is increased by 35%, and the elongation is increased by 82%.

基金项目:
陕西省自然科学基础研究计划资助项目(2019JM-247);西安航空学院校级科研基金项目(2019KY1229);大学生创新创业训练计划项目(S202011736005)
作者简介:
朱嵩琦(1988-),男,学士 E-mail:742791330@qq.com 通信作者:张金龙(1976-),男,博士,教授 E-mail:zjl24931@163.com
参考文献:

 [1]Wu R Z, Yan Y D, Wang G X, et al. Recent progress in magnesium-lithium alloys[J]. International Materials Reviews, 2015, 60(2): 65-100.


 


[2]Jia Q, Wang Y, Wu R Z, et al. High specific strength Mg-Li-Zn-Er alloy processed by multi deformation processes[J]. Materials Characterization, 2020, 160: 110135.


 


[3]Li X Q, Ren L, Le Q C, et al. The hot deformation behavior, microstructure evolution and texture types of as-cast Mg-Li alloy[J]. Journal of Alloys and Compounds, 2020, 831: 154868.


 


[4]Zhang T, Tokunaga T, Ohno M, et al. Low Temperature superplasticity of a dual-phase Mg-Li-Zn alloy processed by a multi-mode deformation process[J]. Materials Science and Engineering A, 2018, 737: 61-68.


 


[5]Guo F, Jiang L Y, Ma Y L, et al. Strengthening a dual-phase Mg-Li alloy by strain-induced phase transformation at room temperature[J]. Scripta Materialia, 2020, 179: 16-19.


 


[6]Karami M, Mahmudi R. Work hardening behavior of the extruded and equal-channel angularly pressed Mg-Li-Zn alloys under tensile and shear deformation modes[J]. Materials Science and Engineering A, 2014, 607:512-520.


 


[7]Wu L B, Cui C L, Wu R Z, et al. Effects of Ce-rich RE additions and heat treatment on the microstructure and tensile properties of Mg-Li-Al-Zn-based alloy[J]. Materials Science and Engineering A, 2011, 528(4): 2174-2179.


 


[8]Cao F R, Xia F, Hou H L, et al. Effects of high-density pulse current on mechanical properties and microstructure in a rolled Mg-9.3Li-1.79Al-1.61Zn alloy[J]. Materials Science and Engineering A, 2015, 637: 89-97.


 


[9]Xu T CPeng X DQin Jet al. Dynamic recrystallization behavior of Mg-Li-Al-Nd duplex alloy during hot compression[J]. Journal of Alloys and Compounds201563979-88.


 


[10]Xu D KLi C QWang B Jet al. Effect of icosahedral phase on the crystallographic texture and mechanical anisotropy of duplex structured Mg-Li alloys[J]. Materials and Design20158888-97.


 


[11]Cao F R, Zhou B J, Ding X, et al. Mechanical properties and microstructural evolution in a superlight Mg-7.28Li-2.19Al-0.091Y alloy fabricated by rolling[J]. Journal of Alloys and Compounds, 2018, 745: 436-445.


 


[12]Zhao J, Zhang J, Liu W C, et al. Effect of Y content on microstructure and mechanical properties of as-cast Mg-8Li-3Al-2Zn alloy with duplex structure[J]. Materials Science and Engineering, 2016, 650: 240-247.


 


[13]Peng X, Wu G H, Xiao L, et al. Effects of Ce-rich RE on microstructure and mechanical properties of as-cast Mg-8Li-3Al-2Zn-0.5Nd alloy with duplex structure[J]. Progress in Natural Science, 2019, 29(1): 103-109.


 


[14]高占奎, 王先飞, 刘文才, . 镁锂合金时效行为研究现状及展望[J]. 特种铸造及有色合金, 2018, 38(11): 1198-1203.


 


Gao Z K, Wang X F, Liu W C, et al. Research status and progress in aging behavior of Mg-Li alloy[J]. Special Casting and Nonferrous Alloys, 2018, 38(11): 1198-1203.


 


[15]Sun L G, Wu G, Wang Q, et al. Nanostructural metallic materials: Structures and mechanical properties[J]. Materials Today, 2020, 38: 114-135.


 


[16]Wang B, Juan L I, Sun J, et al. Shear localization and its related microstructural evolution in the ultrafine grained titanium processed by multi-axial compression[J]. Materials Science and Engineering A, 2014, 612(612): 227-235.


 


[17]Rezaee-Bazzaz A, Ahmadian S. Modeling of mechanical behavior of ultra fine grained aluminum produced by multiple compressions in a channel die[J]. Materials and Design, 2012, 34: 230-234.


 


[18]杨续跃, 孙争艳, 张雷. 室温多向多道次压缩变形制备亚微米和纳米级镁合金[J]. 金属学报, 2010, 46(5): 607-612.


 


Yang X Y, Sun Z Y, Zhang L. Preparation of submicro and nanosized magnesium alloys by multiply compressed deformation[J]. Acta Metallurgica Sinica, 2010, 46(5): 607-612.


 


[19]Liu G, Xie W, Hadadzadeh A, et al. Hot deformation behavior and processing map of a superlight dual-phase Mg-Li alloy[J]. Journal of Alloys and Compounds, 2018, 766(1): 460-469.


 


[20]Cao F R, Xue G Q, Xu G M. Superplasticity of a dual-phase-dominated Mg-Li-Al-Zn-Sr alloy processed by multidirectional forging and rolling[J]. Materials Science and Engineering A, 2017, 704:360-374.


 


[21]张金龙, 路恩皓, 朱均, . Mg-9.5Li-2.56Al-2.58Zn合金组织及室温变形行为[J]. 稀有金属材料与工程, 2021, 50(4): 1359-1364.


 


Zhang J L, Lu E H, Zhu J, et al. Microstructure and room temperature deformation behavior of Mg-9.5Li-2.56Al-2.58Zn alloy[J]. Rare Metal Materials and Engineering, 2021, 50(4): 1359-1364.


 

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9