网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
板体锻造工艺优化及试验验证
英文标题:Optimization on plate body forging process and experimental verification
作者:闫红艳 王志科 蒋起臣 王永生 张杜明 王丽霞 杨勇 
单位:中国机械总院集团北京机电研究所有限公司 北京北方车辆集团有限公司 
关键词:板体 镦粗 模具磨损 等效应力 余料仓 
分类号:TG316
出版年,卷(期):页码:2022,47(10):36-41
摘要:

优化了板体的锻造工艺,将锻造工艺中的平面镦粗去氧化皮工步优化为成形镦粗,将原镦粗的扁平形状改为中间低两边高的形状,以达到更合理的材料分配。通过优化成形镦粗的形状和高度,将终锻模具的最大等效应力降低了30%左右,终锻模具易磨损位置的磨损量降低了25%左右,达到了提高终锻模具寿命的目的。同时,优化了顶杆的安装位置,在顶杆位置处增加余料仓,增加材料的流动空间,降低顶杆受力,可以有效提高顶杆寿命。试验发现,成形镦粗件的长度对终锻成形的影响不容忽视,成形镦粗件长度应小于锻件长度,否则容易产生折叠缺陷。将试生产锻件与模拟结果对比,可以确认优化后的成形镦粗工步和顶杆余料仓的作用是有效的。 

The forging process of plate body was optimized, the plane upsetting and descaling step in the forging process was optimized to forming upsetting, and the flat shape of the original upsetting was changed to a shape with a lower middle and higher sides to achieve a more reasonable material distribution. Then, by optimizing the shape and height of forming upsetting, the maximum equivalent stress of the final forging mold was reduced by about 30%, and the wear amount of the easy-wear position in the final forging mold was reduced by about 25%, achieving the purpose of improving the final forging mold life. At the same time, the installation position of upper eject rod was optimized, and the residual bin was added at the position of eject rod to increase the material flow space and reduce the force of eject rod, which effectively improved the life of eject rod. Experiments show that the influence of the length of formed upsetting parts on the final forging cannot be ignored, and the length of formed upsetting parts should be less than the length of forgings, otherwise it is easy to folding. Comparing the trial production forgings with the simulation results, it can be confirmed that the optimized forming upsetting step and the eject rod residual bin are effective. 

基金项目:
作者简介:
闫红艳(1979-),女,硕士,正高级工程师,E-mail:yanhongyan2013@126.com
参考文献:

[1]蔡圣,刘欣梅,陈军.薄板渐进成形数值仿真研究进展[J].塑性工程学报,2020,274):1-12.

Cai SLiu X M, Chen J. Research progress on numerical simulation of incremental sheet forming[J].Journal of Plasticity Engineering2020,274):1-12.

[2]江荣忠. 墙式阻力毛边槽在复杂锻件中的研究和应用[D]. 南昌:南昌航空大学,2019.

Jiang R Z. Walltype Flash Cave in Complex Forgings Research and Application [D]. Nanchang: Nanchang Hangkong University,2019.

[3]王国丽.工程机械用典型锻件锻造工艺模具设计及成形过程数值模拟[D]. 济南:山东大学, 2013. 

Wang G L. Design of Forging Process and Dies and the Numerical Simulation of Typical Forgings for Construction Machinery[D]. Jinan: Shandong University, 2013. 

[4]孙兴辰. 推土机履带板锻造全过程工艺设计及质量控制的研究[D]. 济南:山东大学,2019. 

Sun X C. Research on Forging Process Design and Quality Control of Bulldozer Crawler Plate [D]. Jinan: Shandong University,2019. 

[5]李科锋,孙晓东,陈波,.薄壁深长筋履带下板体成形工艺研究[J].新技术新工艺,2016,(9):86-88. 

Li K F, Sun X D, Chen B, et al. Research on thinwalled deep muscle tracks the lower body forming technology[J].New Tech-nology & New Process,2016,(9):86-88. 

[6]李科锋,渠育杰,孔令晶.铝负重轮的设计与工艺研制[J].新技术新工艺,2016,(8):84-88. 

Li K F, Qu Y J, Kong L J. Design and process development for aluminum road wheel[J].New Technology & New Process, 2016, (8):84-88. 

[7]徐皓,刘江.高强度精密锻钢活塞锻造预锻模具设计及加工关键要点实践研究[J].塑性工程学报,2021,2811):50-55. 

Xu HLiu J. Practice research on key points of preforging die design and machining for high strength precision forged steel piston forging[J].Journal of Plasticity Engineering2021,2811):50-55. 

[8]石然然,李名尧,王波,.基于DEFORM-3D的曲轴锻造模具应力分析[J].热加工工艺,2014,43(3):121-123. 

Shi R R, Li M Y, Wang B, et al. Die stress analysis of crankshaft forging based on DEFORM-3D[J].Hot Working Technology, 2014, 43(3):121-123. 

[9]张松泓,徐颖若.基于响应面法发动机连杆热锻模具磨损失效分析[J].锻压技术,2021,46(7):178-184. 

Zhang S H, Xu Y R. Analysis on wear failure of hot forging die for engine connecting rod based on response surface method[J]. Forging & Stamping Technology,2021,46(7):178-184. 

[10]马才伏,周兵.汽车三叉式万向节精密成形工艺[J].锻压技术,2021,46(6):41-47. 

Ma C F, Zhou B. Precision forming process on automobile trident universal joint[J]. Forging & Stamping Technology, 2021, 46(6):41-47. 

[11]赵中里,薛勇杰,吴大鸣,.热锻模高温摩擦磨损探讨及对策[J].模具工业,2021,47(5):1-5. 

Zhao Z L, Xue Y J, Wu D M, et al. High temperature friction and wear behavior of hot forging die and its countermeasures[J]. Die & Mould Industry, 2021, 47(5):1-5. 

[12]翟崇琳,唐友亮,徐青青,.基于正交试验的汽车扭力臂热锻模具磨损分析及优化[J].锻压技术,2021,46(5):185-189.

 Zhai C L, Tang Y L, Xu Q Q, et al. Wear analysis and optimization of hot forging mold for automobile torque arm based on orthogonal test[J]. Forging & Stamping Technology, 2021,46(5):185-189. 

[13]齐双强.活塞预锻模具磨损失效研究[J].锻压技术,2021,46(3):21-26. 

Qi S Q. Research on wear failure for preforging die of piston[J]. Forging & Stamping Technology,2021,46(3):21-26. 

[14]杨红超,淳道勇,和永岗,.GH4169合金叶片挤杆工序模具磨损及寿命的数值模拟分析[J].锻压技术,2021,46(3):198-207. 

Yang H C, Chen D Y, He Y G, et al. Numerical simulation analysis on wear and life of mold in bar extrusion process for GH4169 alloy blade[J]. Forging & Stamping Technology,2021, 46(3):198-207.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9