网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
大型双相钢封头压鼓成形数值模拟研究
英文标题:Numerical simulation research on pressure drum forming for large dual phase steel head
作者:代奥 阮金华 王志刚 张宏昱 
单位:武汉科技大学 
关键词:大型封头 压鼓 非均匀塑性变形 应力 应变 
分类号:TG386.41
出版年,卷(期):页码:2022,47(10):56-62
摘要:

采用有限元数值模拟作为研究手段,将大型双相钢封头作为研究对象,通过分析其应力、应变和速度来研究封头压鼓成形过程中坯料的变形规律。结果表明,在坯料中面的任一法线上,不同点的应力与应变有较大的不同,说明了该有限元模型不应采用壳单元。在压鼓成形前期,坯料主要受到上模的压力,使其上模底端附近的金属向尾端流动;随着压下量的增加,位于下模圆角处的坯料的拉应力也达到材料的屈服点,在下模圆角的弯曲作用下附近的金属向板坯中心流动;随着压下量进一步增大,坯料与上模贴合的部分越来越多,该区域的金属速度逐渐趋向于0,而下模圆角附近的金属速度则越来越大。研究成果可用于指导压鼓模的制造和路径的控制。 

Based on finite element numerical simulation, for the large dual phase steel head, the deformation laws of blank in the pressure drum forming process of head were studied by analyzing its stress, strain and velocity. The results show that the stress and strain at different points on any normal line of the middle plane of blank are different, which indicates that the shell element should not be used in this finite element model. In the early stage of pressure drum forming, the blank is mainly subjected to the pressure of upper die, so that the metal near the bottom end of upper die flows to the tail end. With the increasing of reduction amount, the tension stress of blank located at the lower die fillet corner also reaches the material yield point, and the metal near the lower die fillet corner flows into the sheet blank centre under the bending action. With the further increasing of reduction amount, more and more parts of blank and upper die are attached, and the metal velocity in this area gradually tends to zero, while the metal velocity near the fillet corner of lower die becomes larger and larger. Thus, the research results can be used to guide the manufacturing and path control of pressure drum die. 

基金项目:
作者简介:
代奥(1996-),男,硕士研究生,E-mail:a1091041840@qq.com;通信作者:王志刚(1973-),男,博士,教授,E-mail:wzhigang@wust.edu.cn
参考文献:

 [1]李雷, 赵柏森. 基于人工神经网络和遗传算法的封头成形工艺参数多目标优化[J]. 锻压技术,2021465):39-45.

Li L, Zhao B S. Multi-objective optimization on head forming process parameters based on artificial neural network and genetic algorithm[J]. Forging & Stamping Technology, 2021, 46 (5): 39-45.

[2]王金刚,赵文凯,刘旭洋,等.基于Deform的椭圆形封头热冲压成形有限元分析及优化[J]. 锻压技术,20204512):40-46.

Wang J G, Zhao W K, Liu X Y, et al. Finite element analysis and optimization on hot stamping of oval head based on Deform[J]. Forging & Stamping Technology, 20204512):40-46.

[3]朱向哲,谢禹钧,王晓华.半球形厚壁封头冲压有限元分析及优化[J]. 辽宁石油化工大学学报,2004, 244):51-53.

Zhu X Z, Xie Y J, Wang X H. Finite element analysis and optimization of the drawing process of head with thick semi-sphericak shell[J]. Journal of Liaoning University of Petroleum & Chemical Technology, 2004, 244):51-53.

[4]张国智.大型封头热拉深力学机理及仿真研究[J]. 中国机械工程,2013248):1114-1117.

Zhang G Z. Study on mechanics mechanism and simulation of hot-drawing process of large head[J]. China Mechanical Engineering, 2013, 24 (8): 1114-1117.

[5]李海峰,陈明亮,谢志毅. 大型厚壁半球形风头热冲压成形的数值模拟[J]. 计算机仿真术,2004, 21(3)109-112.

Li H F, Chen M L, Xie Z Y. Numerical simulation of hot drawing process for a large-scale thick-walled semi-spherical head [J]. Computer Simulation, 2004, 21(3)109-112.

[6]万晋.加工减薄后的椭圆封头强度数值分析[J]. 石油化工设备,2006351:41-43.

Wan J. Stength numerical analysis of elliptical heads due to machining thickness reduction[J]. Petro-Chemical Equipment, 2006, 35 (1):41-43.

[7]王中武.标准椭圆封头常用成形方法壁厚变化分析及开孔补强经济设计探讨[J]. 金属加工:热加工, 2009,(1):69-72.

Wang Z W. Analysis on wall thickness variation of common forming methods of standard elliptical head and discussion on economic design of opening reinforcement[J]. Metal Working, 2009, (1): 69-72.

[8]沈国劬.大型厚壁封头锻件的拉深成形[J]. 大型铸锻件,2020(6)8-10, 23.

Shen G Y. Drawing forming of large thick-wall head forgings[J]. Large Castings and Forgings, 2020, (6): 8-10, 23.

[9]隋然,唐志云,黄小丽, .冷旋压封头压鼓开裂的分析[J]. 现代商检科技,199996):31-33.

Sui R, Tang Z Y, Huang X L, et al. Analysis of drum cracking of cold spinning head[J]. Modern Commodity Inspection Science and Technique, 1999, 9 (6): 31-33.

[10]李辉,孙斌,丁森.火箭贮箱箱底瓜瓣拉深成形数值模拟[J]. 上海航天,2012,29(4)54-58.

Li H, Sun B, Ding S. Numerical simulation of stretch forming process of rocket tank bottom′s melon petals spares[J]. Aerospace Shanghai, 2012,29 (4)54-58.

[11]毕海娟,田恕,李继光,等. 椭球瓜瓣构建充液成形模具设计及优化[J]. 锻压技术,2021,466):167-173.

Bi H J, Tian S, Li J G, et al. Design and optimization on hydroforming die for ellipsoidal melon petal component[J]. Forging & Stamping Technology, 2021,46 (6): 167-173.

[12]韩文彦.金属储罐拱顶瓜瓣板计算机优化排版下料[J]. 石油工程建设,1997,5:37-39.

Han W Y. Computer optimal layout and blanking of melon flap plate on the vault of metal storage tank[J]. Petroleum Engineering Construction, 1997, (5): 37-39.

[13]杨小强,孙家根, 戴龙林. 球形封头不锈钢衬里冲压成形与回弹过程的数值模拟与分析[J]. 中国制造业信息化,2004, 33(5)113-115,119.

Yang X Q, Sun J G, Dai L L. Numerical simulation of the forming and spring return process in thick-walled head lining of stainless steel[J]. Manufacturing Information Engineering of China, 2004, 33(5): 113-115,119.

[14]刘帆. N10276复合板封头热压成型的分析[J]. 压力容器, 2007, 24(5):21-25.

Liu F. Analysis about hot forming of N10276 clad plate head[J]. Pressure Vessel Technology, 2007, 24(5): 21-25.

[15]GB/T 228.1—2021, 金属材料拉伸试验第1部分:室温试验方法[S].

GB/T 228.1—2021, Metallic materials—Tensile testing—Part 1: Method of test at room temperature [S].

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9