网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
2024铝合金薄壁马鞍形尾椎上壁板半管零件的双层板液压拉深成形工艺
英文标题:Hydraulic deep drawing process with double-layer plate for 2024 aluminum alloy thin-walled saddle-shaped upper wall plate half-pipe part
作者:魏来 马江泽 郎利辉 张三敏 张艳峰 
单位:沈阳工业大学 后勤处 天津天锻航空科技有限公司 天津市天锻压力机有限公司 北京航空航天大学 机械工程及自动化学院 
关键词:2024铝合金 双层板 液压拉深成形 压弯 液室压强 
分类号:TG386; V261.2+8
出版年,卷(期):页码:2022,47(11):130-136
摘要:

 为解决某国产飞机上某2024铝合金薄壁马鞍形尾椎上壁板半管零件在传统落压以及蒙拉中容易产生的破裂、起皱、表面质量差等问题,采用液压拉深工艺,综合考虑尾椎上壁板半管零件的马鞍形脊线在成形过程中导致的局部失稳现象,借助双层板辅助成形的思想,解决了零件尾部流料问题。利用有限元软件建立了有限元模型,对2024铝合金薄壁马鞍形尾椎上壁板半管蒙皮件的双层板液压拉深工艺进行了数值模拟。通过模拟分析,结合双层板液压拉深成形过程中对辅助板料的要求,确定了辅助板料的屈服强度的范围;根据材料变形能力和零件结构形状,优化了充液加载时的最大液室压强。模拟得出的最优结果为:辅助板料的屈服强度应在174 MPa以上,最大液室压强为15 MPa。最后对模拟结果进行了实验验证,试制出了合格的马鞍形尾椎上壁板半管零件,为此零件的成形提供了一套符合工业生产要求的工艺方法,对此类形状零件的成形具有很大的借鉴作用。

 In order to solve the problems of cracking, wrinkling and poor surface quality of an 2024 aluminum alloy  thin-walled saddle-shaped upper wall plate half-pipe part for tail vertebra on a Chinese aircraft in the traditional drop pressure and stretching, the hydraulic deep drawing process was adopted, and considering that the saddle-shaped ridge line of the upper wall plate half-pipe part for tail vertebra caused local instability during the forming process, the problem of material flow at the end of part was solved with the aid of the double-layer plate auxiliary forming idea. Then, the finite element model was established by finite element software, and the hydraulic deep drawing process with double-layer plate for 2024 aluminum alloy  thin-walled saddle-shaped upper wall plate half-pipe skin part for tail vertebra was simulated numerically. Furthermore, through the simulation analysis, combined with the requirements of auxiliary sheet in the process of double-layer plate hydraulic deep drawing, the yield strength range of auxiliary plate was determined, and according to the deformation ability of materials and the structural shape of part, the maximum liguid chamber pressure of liquid filling was optimized. The optimal simulation results show that the yield strength of the auxiliary plate should be above 174 MPa, and the maximum liquid chamber pressure is 15 MPa. Finally, the simulation results are verified by experiments, and the qualified saddle-shaped upper wall plate half-pipe parts for tail vertebra are produced, which provides a set of process methods in line with industrial production requirement and has great reference significance for the forming of such shaped parts.

基金项目:
作者简介:
作者简介:魏来(1980-),男,学士,工程师,E-mail:28775147@qq.com;通信作者:马江泽(1989-),男,硕士,工程师,E-mail:445791011@qq.com
参考文献:

 [1]关军. 大曲面盒形零件充液成形工艺研究[J].机械设计,2018,35(S1):193-196.


Guan J. Study on filling forming technology of large curved box parts[J]. Journal of Machine Design, 2018, 35(S1):193-196.


[2]董浩. 5A06铝合金双层板充液拉深变形规律研究[D].哈尔滨:哈尔滨工业大学,2015.


Dong H. Investigation on Hydro-forming of 5A06 Aluminum Alloy Double-layer Sheets [D]. HarbinHarbin Institute of Technology, 2015.


[3]徐永超, 周斌军, 周久红. 不锈钢外板对2219铝合金拼焊板胀形性能的影响[J].精密成形工程, 2016, 85:65-70.


Xu Y C, Zhou B J, Zhou J H. Effects of outside sheet on the bulging properties of inside 2219 aluminum FSW sheet[J]. Journal of Netshape Forming Engineering, 2016, 85:65-70.


[4]孙志莹,郎利辉,孔德帅.铝合金马鞍形件充液成形工艺模拟分析[J].精密成形工程, 2015, 71:46-5065.


Sun Z Y, Lang L H, Kong D S. Simulation analysis of hydroforming process for alumium alloy saddle parts[J]. Journal of Netshape Forming Engineering, 2015, 71:46-5065.


[5]胡成武,李光,毛远征,等.圆筒形件的拉深变形与应力分析[J].塑性工程学报,2020273):130-136.


Hu C WLi GMao Y Zet al. Stress analysis and deformation of deep drawing for cylindrical part [J].Journal of Plasticity Engineering2020273):130-136.


[6]周久红.2219铝合金拼焊内层板的双板液压成形工艺研究[D].哈尔滨:哈尔滨工业大学,2016.


Zhou J H. Research on Hydroforming of Double Layered Sheet of Inner Tallor-welded Blank of 2219 Aluminum Alloy[D]. HarbinHarbin Institute of Technology, 2016.


[7]王朝鸣,马江泽, 张建民, .2024铝合金长半管类零件充液成形技术研究[J].机械设计, 2020, 376:82-86.


Wang C M, Ma J Z, Zhang J M, et al. Research on hydro-forming technology for long semi-pipe parts of 2024 aluminum alloy[J]. Journal of Machine Design, 2020, 376:82-86.


[8]吴娜,刘超,王晓迪.小型汽车桥壳液压胀形加工方法的研究现状[J].塑性工程学报,2020,279):12-19.


Wu NLiu CWang X D.Research status on hydro-bulging processing method of small automobile axle-housing [J].Journal of Plasticity Engineering2020,279):12-19.


[9]GB/T 228.1—2021,金属材料拉伸试验第1部分:室温试验方法[S].


GB/T 228.1—2021, Metallic materials—Tensile testing—Part 1: Method of test at room temperature [S].


[10]杨莎. 管材充液成形自动化生产线控制技术[J]. 机械设计, 2018, 35(S1):362-365.


Yang S. Tubular hydroforming automatic production line control technology[J]. Journal of Machine Design, 2018, 35(S1):362-365.


[11]陈超,秦登林,赵升吨,等.1600 kN精压机工作机构的力学分析[J].塑性工程学报,2021,285):53-61.


Chen C, Qin D L, Zhao S Det al. Mechanical analysis of working mechanisms of 1600 kN precision press[J].Journal of Plasticity Engineering2021,285):53-61.


[12]刘佳琪,陈学文,皇涛,等.2A12铝合金临界损伤值测定及试验验证[J].塑性工程学报,2020,271):131-137.


Liu J QChen X WHuang Tet al. Measurement and experimental validation of critical damage value for 2A12 aluminum alloy[J].Journal of Plasticity Engineering2020,271):131-137.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9