[1]SAE AMS 5561G—2007, Steel, corrosion and heat-resistant, welded and drawn or seamless and drawn tubing 9.0Mn-20Cr-6.5Ni-0.28N high-pressure hydraulic[S].
[2]Yang H, Li H, Zhang Z Y, et al. Advances and trends on tube bending forming technologies [J]. Chinese Journal of Aeronautics, 2012, 25(1):1-12.
[3]Fang J, Ouyang F, Lu S Q. Springback compensation of high strength 21-6-9 tube after NC bending[J]. Journal of Physics: Conference Series, 2020, 1676: 012045.
[4]许小妹. 0Cr21Ni6Mn9N不锈钢管数控弯曲回弹的数值模拟研究[D]. 南昌:南昌航空大学, 2014.
Xu X M. Numerical Simulation Study on Springback of 0Cr21Ni6Mn9N Stainless Steel Tube NC Bending[D]. Nanchang: Nanchang Hangkong University, 2014.
[5]Al-Qureshi H A, Russo A. Springback and residual stresses in bending of thin-walled aluminum tubes [J]. Materials & Design, 2002, 23(2):217-222.
[6]Lu S Q, Fang J, Wang K L. Plastic deformation analysis and forming quality prediction of tube NC bending[J]. Chinese Journal of Aeronautics, 2016, 29(5):1436-1444.
[7]方军, 鲁世强, 王克鲁, 等. 21-6-9高强不锈钢管数控弯曲回弹的理论计算及有限元分析[J]. 中国机械工程, 2015, 26(3):379-384.
Fang J, Lu S Q, Wang K L, et al. Theoretical calculation and FE analysis of springback for 21-6-9 high strength stainless steel tube during NC bending[J]. China Mechanical Engineering, 2015, 26(3):379-384.
[8]Ma J, Li H, Fu M W. Modelling of springback in tube bending: A generalized analytical approach [J]. International Journal of Mechanical Sciences, 2021,204:106516.
[9]Zhan M, Xing L, Cao P F, et al. An analytical springback model for bending of welded tube considering the weld characteristics[J]. International Journal of Mechanical Sciences,2019, 150(1): 594-609.
[10]陈光耀, 李恒, 贺子芮, 等. 基于机器学习的管材弯曲回弹有效预测与补偿[J]. 中国机械工程, 2020, 31(22):2745-2752.
Chen G Y, Li H, He Z R, et al. Effective prediction and compensation of springbacks for tube bending using machine learning approach[J]. China Mechanical Engineering, 2020, 31(22): 2745-2752.
[11]Wu W Y, Zhang P, Zeng X Q, et al. Bendability of the wrought magnesium alloy AM30 tubes using a rotary draw bender[J]. Materials Science and Engineering:A, 2008,486(1-2):596-601.
[12]Li H, Shi K P, Yang H, et al. Springback law of thin-walled 6061-T4 Al-alloy tube upon bending[J]. Transactions of Nonferrous Metals Society of China, 2012, 22(S2): 357-363.
[13]Salem M, Farzin M, Kadkhodaei M, et al. A chain link mandrel for rotary draw bending: Experimental and finite element study of operation [J]. The International Journal of Advanced Manufacturing Technology, 2015, 79(5-8): 1071-1080.
[14]蔡伟, 双远华, 苟毓俊, 等. 0Cr18Ni9管材大曲率无芯弯曲回弹研究[J]. 塑性工程学报, 2018,25(6): 70-76.
Cai W, Shuang Y H,Gou Y J,et al. Springback of 0Cr18Ni9 tube in large curvature and non-mandrel bending process[J]. Journal of Plasticity Engineering, 2018, 25 (6):70-76.
[15]方军, 鲁世强, 王克鲁, 等. 21-6-9高强不锈钢管数控弯曲回弹对材料参数的敏感性[J].西安交通大学学报, 2015, 49(3): 136-142.
Fang J, Lu S Q, Wang K L, et al. Sensitivity analysis of springback to material parameters in high strength 21-6-9 stainless steel tube NC bending[J]. Journal of Xi′an Jiaotong University, 2015, 49(3): 136-142.
[16]Zhu Y X, Chen W, Li P H, et al. Spirngback study of RDB of rectangular H96 tube[J]. International Journal of Mechanical Sciences, 2018, 138-139:282-294.
[17]Xue X, Liao J, Vincze G, et al. Control strategy of twist springback for aluminium alloy hybrid thin-walled tube under mandrel-rotary draw bending [J]. International Journal of Material Forming, 2018, 11(1): 311-323.
[18]Li H, Yang H, Song F F, et al. Springback characterization and behaviors of high-strength Ti-3Al-2.5V tube in cold rotary draw bending[J]. Journal of Materials Processing Technology, 2012, 212(9):1973-1987.
[19]李恒, 杨合, 宋飞飞, 等. 材料性能波动下TA18钛管绕弯回弹行为[J]. 稀有金属材料与工程, 2014, 43(1): 64-71.
Li H, Yang H, Song F F, et al. Springback rules of TA18 titanium tube upon rotary draw bending under variations of material properties[J]. Rare Metal Materials and Engineering, 2014, 43(1): 64-71.
[20]Fang J, Ouyang F, Lu S Q, et al. Variation of elastic modulus of high strength 21-6-9 tube and its influences on forming quality in numerical control rotary draw bending[J]. Proceedings of the Institution of Mechanical Engineers Part C:Journal of Mechanical Engineering Science, 2021, 235(21):5684-5694.
[21]Fang J, Ouyang F, Lu S Q, et al. Wall thinning behaviors of high strength 0Cr21Ni6Mn9N tube in numerical control bending considering variation of elastic modulus[J]. Advances in Mechanical Engineering, 2021, 13(5):1-14.
[22]GB/T 228.1—2021, 金属材料拉伸试验第1部分:室温试验方法[S].
GB/T 228.1—2021, Metallic material—Tensile test—Part 1: Method of test at room temperature [S].
[23]欧阳芳, 鲁世强, 方军, 等. 塑性应变对21-6-9高强不锈钢管瞬时弹性模量的影响[J]. 塑性工程学报, 2019, 26(3): 203-211.
Ouyang F, Lu S Q, Fang J, et al. Effect of plastic strain on instantaneous elastic modulus of 21-6-9 high strength stainless steel tube [J]. Journal of Plasticity Engineering, 2019, 26(3): 203-211.
[24]谷瑞杰. 薄壁管数控弯曲回弹研究[D]. 西安: 西北工业大学, 2008.
Gu R J. Study on Springback of Thin-walled Tube NC Bending[D]. Xi′an: Northwestern Polytechnical University, 2008.
[25]方军. 21-6-9高强不锈钢管数控绕弯成形规律研究[D]. 南京:南京航空航天大学, 2015.
Fang J. Study on Forming Rules of 21-6-9 High-Strength Stainless Steel Tubes in NC Rotary Draw Bending Process[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2015.
|