网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
工艺参数对弹性模量变化条件下高强不锈钢管绕弯回弹行为的影响
英文标题:Influence of process parameters on springback behavior in rotary draw bending under variable elastic modulus condition for high strength stainless steel tube
作者:方军 欧阳芳 尚文瑄 鲁世强 王克鲁 向军淮 
单位:江西科技师范大学 材料与机电学院 南昌航空大学 航空制造工程学院 
关键词:高强不锈钢管 回弹 弹性模量 数控绕弯 塑性应变 
分类号:TG386
出版年,卷(期):页码:2022,47(11):137-145
摘要:

 采用反复加载-卸载拉伸试验获得了高强0Cr21Ni6Mn9N不锈钢管的弹性模量随塑性变形的变化规律,构建了弹性模量与塑性应变之间的函数关系,并嵌入ABAQUS软件中模拟了工艺参数对高强不锈钢管数控绕弯回弹行为的影响,分析了回弹对工艺参数的敏感性。结果表明:弹性模量变化和恒定条件下,工艺参数对高强不锈钢管数控绕弯回弹行为的影响的变化趋势相似,只是弹性模量变化条件下的回弹值增大了;回弹角和回弹半径随着芯棒伸出量、弯曲速度、助推速度的增大或管材/芯棒间隙、管材/弯曲模间隙、管材/弯曲模摩擦因数的减小而减小。回弹半径对工艺参数更为敏感,其敏感性大小依次为:管材/弯曲模间隙、管材/弯曲模摩擦因数、助推速度、弯曲速度、芯棒伸出量和管材/芯棒间隙,而回弹角对各工艺参数的敏感性不显著。

 The change law of elastic modulus for high strength 0Cr21Ni6Mn9N stainless steel  tube versus plastic deformation was obtained by using the repeated loading-unloading tensile tests, and the function relationship between elastic modulus and plastic strain was established, which was embedded into software ABAQUS to simulate the influences of process parameters on springback behavior in numerical control (NC) rotary draw bending for high strength stainless steel tube. Then, the sensitivity of springback to process parameters was analyzed. The results show that the change trend of the influence of process parameters on springback behavior in NC rotary draw bending for high strength stainless steel tube is similar under the conditions of variable elastic modulus and constant elastic modulus, but only the value of springback under the condition of variable elastic modulus increases. Springback angle and radius decrease with the increasing of mandrel extension length, bending speed and push assistant speed or with the decreasing of clearance between tube and mandrel, clearance between tube and bending die and friction coefficient between tube and bending die. The springback radius is more sensitive to the process parameters, and its sensitivity sorts from the largest to the smallest is clearance between tube and bending die, friction coefficient between tube and bending die, push assistant speed, bending speed, mandrel extension length and clearance between tube and mandrel, while the sensitivity of springback angle to various process parameters is not significant.

基金项目:
江西省自然科学基金资助项目(20192BAB216022);江西省教育厅科学技术研究项目(GJJ201126,GJJ180615)
作者简介:
作者简介:方军(1984-),男,博士,副教授,E-mail:fangjun020j13@163.com
参考文献:

 [1]SAE AMS 5561G—2007, Steel, corrosion and heat-resistant, welded and drawn or seamless and drawn tubing 9.0Mn-20Cr-6.5Ni-0.28N high-pressure hydraulic[S].


[2]Yang H, Li H, Zhang Z Y, et al. Advances and trends on tube bending forming technologies [J]. Chinese Journal of Aeronautics, 2012, 25(1):1-12.


[3]Fang J, Ouyang F, Lu S Q. Springback compensation of high strength 21-6-9 tube after NC bending[J]. Journal of Physics: Conference Series, 2020, 1676: 012045.


[4]许小妹. 0Cr21Ni6Mn9N不锈钢管数控弯曲回弹的数值模拟研究[D]. 南昌:南昌航空大学, 2014.


Xu X M. Numerical Simulation Study on Springback of 0Cr21Ni6Mn9N Stainless Steel Tube NC Bending[D]. Nanchang: Nanchang Hangkong University, 2014.


[5]Al-Qureshi H A, Russo A. Springback and residual stresses in bending of thin-walled aluminum tubes [J]. Materials & Design, 2002, 23(2):217-222.


[6]Lu S Q, Fang J, Wang K L. Plastic deformation analysis and forming quality prediction of tube NC bending[J]. Chinese Journal of Aeronautics, 2016, 29(5):1436-1444.


[7]方军, 鲁世强, 王克鲁, . 21-6-9高强不锈钢管数控弯曲回弹的理论计算及有限元分析[J]. 中国机械工程, 2015, 26(3):379-384.


Fang J, Lu S Q, Wang K L, et al. Theoretical calculation and FE analysis of springback for 21-6-9 high strength stainless steel tube during NC bending[J]. China Mechanical Engineering, 2015, 26(3):379-384.


[8]Ma J, Li H, Fu M W. Modelling of springback in tube bending: A generalized analytical approach [J]. International Journal of Mechanical Sciences, 2021,204:106516.


[9]Zhan M, Xing L, Cao P F, et al. An analytical springback model for bending of welded tube considering the weld characteristics[J]. International Journal of Mechanical Sciences,2019, 150(1): 594-609.


[10]陈光耀, 李恒, 贺子芮, . 基于机器学习的管材弯曲回弹有效预测与补偿[J]. 中国机械工程, 2020, 31(22):2745-2752.


Chen G Y, Li H, He Z R, et al. Effective prediction and compensation of springbacks for tube bending using machine learning approach[J]. China Mechanical Engineering, 2020, 31(22): 2745-2752.


[11]Wu W Y, Zhang P, Zeng X Q, et al. Bendability of the wrought magnesium alloy AM30 tubes using a rotary draw bender[J]. Materials Science and EngineeringA, 2008,486(1-2):596-601.


[12]Li H, Shi K P, Yang H, et al. Springback law of thin-walled 6061-T4 Al-alloy tube upon bending[J]. Transactions of Nonferrous Metals Society of China, 2012, 22(S2): 357-363.


[13]Salem M, Farzin M, Kadkhodaei M, et al. A chain link mandrel for rotary draw bending: Experimental and finite element study of operation [J]. The International Journal of Advanced Manufacturing Technology, 2015, 79(5-8): 1071-1080.


[14]蔡伟, 双远华, 苟毓俊, . 0Cr18Ni9管材大曲率无芯弯曲回弹研究[J]. 塑性工程学报, 2018,25(6): 70-76.


Cai W, Shuang Y HGou Y Jet al. Springback of 0Cr18Ni9 tube in large curvature and non-mandrel bending process[J]. Journal of Plasticity Engineering, 2018, 25 (6):70-76.


[15]方军, 鲁世强, 王克鲁, . 21-6-9高强不锈钢管数控弯曲回弹对材料参数的敏感性[J].西安交通大学学报, 2015, 49(3): 136-142.


Fang J, Lu S Q, Wang K L, et al. Sensitivity analysis of springback to material parameters in high strength 21-6-9 stainless steel tube NC bending[J]. Journal of Xi′an Jiaotong University, 2015, 49(3): 136-142.


[16]Zhu Y X, Chen W, Li P H, et al. Spirngback study of RDB of rectangular H96 tube[J]. International Journal of Mechanical Sciences, 2018, 138-139:282-294.


[17]Xue X, Liao J, Vincze G, et al. Control strategy of twist springback for aluminium alloy hybrid thin-walled tube under mandrel-rotary draw bending [J]. International Journal of Material Forming, 2018, 11(1): 311-323.


[18]Li H, Yang H, Song F F, et al. Springback characterization and behaviors of high-strength Ti-3Al-2.5V tube in cold rotary draw bending[J]. Journal of Materials Processing Technology, 2012, 2129:1973-1987.


[19]李恒, 杨合, 宋飞飞, . 材料性能波动下TA18钛管绕弯回弹行为[J]. 稀有金属材料与工程, 2014, 43(1): 64-71.


Li H, Yang H, Song F F, et al. Springback rules of TA18 titanium tube upon rotary draw bending under variations of material properties[J]. Rare Metal Materials and Engineering, 2014, 43(1): 64-71.


[20]Fang J, Ouyang F, Lu S Q, et al. Variation of elastic modulus of high strength 21-6-9 tube and its influences on forming quality in numerical control rotary draw bending[J]. Proceedings of the Institution of Mechanical Engineers Part CJournal of Mechanical Engineering Science, 2021, 235(21):5684-5694.


[21]Fang J, Ouyang F, Lu S Q, et al. Wall thinning behaviors of high strength 0Cr21Ni6Mn9N tube in numerical control bending considering variation of elastic modulus[J]. Advances in Mechanical Engineering, 2021, 13(5):1-14.


[22]GB/T 228.1—2021, 金属材料拉伸试验第1部分:室温试验方法[S].


GB/T 228.1—2021, Metallic material—Tensile test—Part 1: Method of test at room temperature [S].


[23]欧阳芳, 鲁世强, 方军, . 塑性应变对21-6-9高强不锈钢管瞬时弹性模量的影响[J]. 塑性工程学报, 2019, 26(3): 203-211.


Ouyang F, Lu S Q, Fang J, et al. Effect of plastic strain on instantaneous elastic modulus of 21-6-9 high strength stainless steel tube [J]. Journal of Plasticity Engineering, 2019, 26(3): 203-211.


[24]谷瑞杰. 薄壁管数控弯曲回弹研究[D]. 西安: 西北工业大学, 2008.


Gu R J. Study on Springback of Thin-walled Tube NC Bending[D]. Xi′an: Northwestern Polytechnical University, 2008.


[25]方军. 21-6-9高强不锈钢管数控绕弯成形规律研究[D]. 南京:南京航空航天大学, 2015.


Fang J. Study on Forming Rules of 21-6-9 High-Strength Stainless Steel Tubes in NC Rotary Draw Bending Process[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2015.

服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9