网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
轧制方案对7075铝合金T6板的影响
英文标题:Influence of rolling scheme on 7075 aluminum alloy T6 plates
作者:武磊 何兵 石伟和 古斌 覃文东 陆丽芸 覃铭 
单位:广西壮族自治区铝基新材料工程研究中心  百色学院 材料科学与工程学院 
关键词:7075铝合金 轧制 T6热处理 电导率 固溶 
分类号:TG166.3
出版年,卷(期):页码:2022,47(11):159-164
摘要:

 以7075铝合金板为研究对象,采用“厚板坯多道次”和“薄板坯单道次”两种轧制方案,获得了厚度相近的轧制铝合金板,并对比了T6热处理后铝合金板的金相组织、拉伸性能和断口形貌,观察并分析了板中的未溶相和析出相,测量了固溶后水淬和T6热处理后的铝合金板的电导率,并分析了影响电导率的因素。结果表明:方案1中,铝合金板的晶粒伸长、晶界明显,拉伸断口中韧窝细小均匀,析出相粒子弥散分布,组织均匀性更优;方案2中,铝合金板断口中可观察到存在颗粒粗大的未溶相粒子。方案1中铝合金板的强度和电导率略高于方案2,而伸长率略低。 方案1中铝合金板的性能更优,适用于追求性能指标的情况;方案2中铝合金板虽然性能略低,但生产效率更高、能量消耗更少,可在强调生产效率和能耗控制的情况下采用。

 For 7075 aluminum alloy plates, two rolling schemes of multi-pass for thick plate and single-pass for thin plate were adopted, and the rolled aluminum alloy plates with similar thickness were obtained. Then, the metallographic structure, tensile properties and fracture morphology of aluminum alloy plates after T6 heat treatment were compared, and the undissolved phase and precipitated phases in the plate were observed and analyzed. Furthermore, the conductivities of aluminum alloy plates after solution water quenching and T6 heat treatment was measured respectively, and the factors affecting the conductivity were analyzed. The results show that the grains of the aluminum alloy plate in scheme 1 are elongated, the grain boundaries are obvious, the dimples in the tensile fracture are small and uniform, the precipitation particles are dispersed and distributed, and the uniformity of the structure is better. In scheme 2, the undissolved phase particles with coarse particles can be observed in the fracture of the aluminum alloy plate. The strength and conductivity of the aluminum alloy plate in scheme 1 are slightly higher than those of scheme 2, while the elongation is slightly lower. The aluminum alloy plate in scheme 1 has better performance and is suitable for the pursuit of performance indicators. However, although the performance of the aluminum alloy plate in scheme 2 is slightly lower, it has higher production efficiency and less energy consumption, which is suitable for emphasizing production efficiency and energy consumption control. 

基金项目:
国家自然科学基金资助项目(51961001);广西壮族自治区教育厅“稀土合金结构研究与性能开发重点实验室”培育基地项目(RZ2000003730)
作者简介:
作者简介:武磊(1981-),男,博士,工程师,E-mail:toalbvi@163.com;通信作者:覃铭(1963-),男,学士,教授,E-mail:13507767466@163.com
参考文献:

 [1]刘兵,彭超群,王日初,等.大飞机用铝合金的研究现状及展望[J].中国有色金属学报,201020(9):1705-1715.


Liu BPeng C QWang R Cet al. Recent development and prospects for giant plane aluminum alloys[J].The Chinese Journal of Nonferrous Metals201020(9):1705-1715.


[2]夏华丹.轧制变形量对汽车用7075铝合金组织和力学性能的影响[J].热加工工艺,201948(11):104-106.


Xia H D. Effects of rolling deformation on microstructure and mechanical properties of 7075 aluminum alloy for automobile[J].Hot Working Technology201948(11):104-106.


[3]王梦寒,咸国材,黄龙.时效温度对轧制态7075 铝合金组织及性能的影响[J].金属热处理,201439(5):129-131.


Wang M HXian G CHuang L. Effects of aging temperature on microstructure and mechanical properties of as-rolled 7075 aluminum alloy[J].Heat Treatment of Metals201439(5):129-131.


[4]陈扬,孙正启,张晓欣,等.热处理工艺参数对 7075 铝合金 T6 态组织和性能的影响[J].塑性工程学报,202128(7):145-149.


Chen YSun Z QZhang X Xet al. Effect of heat treatment process parameters on microstructure and properties of 7075 aluminum alloy in T6 state[J].Journal of Plasticity Engineering202128(7):145-149.


[5]曹艳艳,黄甜甜,韦春华,等. 多向强应变-时效下7075合金组织、拉伸及抗晶间腐蚀性能[J].金属热处理,202146(6)168-172.


Cao Y YHuang T TWei C Het al. Microstructure, tensile properties and intergranular corrosion resistance of 7075 aluminum alloy under multi-directional severe strain and aging[J].Heat Treatment of Metals202146(6):168-172.


[6]Mohammad Mehdi Amiri, Faramarz Fereshteh-Saniee. Influence of roll speed difference on microstructure, texture and mechanical properties of 7075 aluminum plates produced via combined continuous casting and rolling process[J]. Transactions of Nonferrous Metals Society of China202131901-912.


[7]Hidalgo P, Cepeda-Jiménez C M, Ruano O A, et al. Influence of the processing temperature on the microstructure, texture, and hardness of the 7075 aluminum alloy fabricated by accumulative roll bonding[J]. Metallurgical and Materials Transactions A, 201041:758-767.


[8]Jiang J F, Liu Y Z, Xiao G F, et al. Effect of pass reduction on microstructure, mechanical properties and texture of hot-rolled 7075 alloy[J]. Materials Characterization, 2019147:324-339.


[9]宋仁国,祁星. 高强铝合金热处理工艺、应力腐蚀与氢脆[M]. 北京:科学出版社,2021.


Song R GQi X. Heat treatment process, stress corrosion and hydrogen embrittlement of high strength aluminium alloy [M]. Beijing: Science Press2021.


[10]李鑫,董焱章,王峰.铜电导率关于拉伸变形的影响模型[J].湖北汽车工业学院学报,201832(1)60-63.


Li XDong Y ZWang F. Influence model of tensile deformation on copper conductivity[J].Journal of Hubei University of Automotive Technology201832(1):60-63.


[11]《中国电力百科全书》编辑委员会. 中国电力百科全书[M]. 北京:中国电力出版社,2001.


Editorial Committee of China Electric Power Encyclopedia. China Electric Power Encyclopedia[M]. Beijing: China Electric Power Press2001.


[12]张亚宁,严文,陈建. 塑性变形对单晶铜线材导电性影响的研究[J].西安工业学院学报,200525(2)150-152.


Zhang Y NYan WChen J. Effects of plastic deformation on the electric property of single crystal copper wires[J].Journal of Xi′an Institute of Technology200525(2):150-152.

服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9