网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
C250钢热变形奥氏体静态再结晶行为
英文标题:Static recrystallization behavior on thermal deformation austenite for C250 steel
作者:戴彦璋 韩顺 厉勇 王春旭 尚丽梅 杨超 
单位:钢铁研究总院有限公司 特殊钢研究院 中国航发商用航空发动机有限责任公司 材料工艺部 
关键词:C250钢 奥氏体 静态再结晶 晶粒尺寸 动力学模型 
分类号:TG142.2
出版年,卷(期):页码:2022,47(11):231-238
摘要:

 利用双道次热压缩试验方法,在Gleeble 1500热模拟机上研究了C250马氏体时效钢在热变形时的静态再结晶软化行为。分析了变形温度、应变速率、变形量以及初始奥氏体晶粒尺寸等不同工艺参数对静态再结晶行为的影响,并观察了不同变形条件下的静态再结晶晶粒尺寸变化。基于试验数据,构建了C250钢静态再结晶的动力学模型,得到了C250钢静态再结晶的激活能为146900.1 J·mol-1。试验结果表明:提高变形温度、加快应变速率、增大变形量以及增加道次间隔时间均能有效地增加C250钢的静态再结晶体积分数,其中变形量对静态再结晶体积分数的影响最大,而初始奥氏体晶粒尺寸对其影响较小;不同变形条件下试样的金相组织有显著的静态再结晶现象,且与计算得到的影响趋势相同;基于双道次热压缩试验数据,将静态再结晶动力学模型的预测结果与试验结果进行对比分析,两者较为吻合。

 The static recrystallization softening behavior of C250 maraging steel in thermalforming was studied by a two-pass thermal compression test method on thermo-simulation machine Gleeble 1500. Then, the influences of different process parameters, such as deformation temperature, strain rate, deformation amount and inital austenite grain size, on the static recrystallization behavior were analyzed, and the size changes of static recrystallization grains under different deformation conditions were observed. Based on the test data, the kinetic model of static recrystallization for C250 steel was constructed, and the activation energy of static recrystallization for C250 steel was obtained as 146900.1 J·mol-1. The test results show that the volume fraction of static recrystallization for C250 steel can be improved with the increasing of deformation temperature, strain rate, deformation amount and interval time between passes. Among them, the deformation amount has the greatest influence on the volume fraction of static recrystallization, while the grain size of inital austenite has little effect on it. The significant static recrystallization phenomenon in the metallographic structure of specimen in different deformation conditions is observed, and the influence trend is the same as that obtained by calculation. Based on two-pass thermal compression test data, the predicted results of the static recrystallization kinetic model are compared with the test results, and the two are in good agreement. 

基金项目:
作者简介:
作者简介:戴彦璋(1998-),男,硕士研究生,E-mail:798273335@qq.com;通信作者:韩顺(1987-),男,博士,高级工程师,E-mail:hanshunfa@126.com
参考文献:

 [1]沈丙振, 方能炜, 沈厚发, . 低碳钢奥氏体再结晶模型的建立 [J]. 材料科学与工艺, 2005, 13(5): 516-520


Shen B Z, Fang N W, Shen H F, et al. Construction of the recrystallization model of low carbon steel during deformation[J]. Materials Science & Technology2005, 13(5): 516-520.


[2]周鹏. 大型锻件成形过程中粗大晶粒细化机制 [D]. 北京:清华大学, 2017.


Zhou P. Coarse Grain Refinement Mechanism During Heavy Forgings Forming Process[D].BeijingTsinghua University, 2017.


[3]赵立华, 孙燕, 张艳姝. 高强钢300M静态再结晶动力学研究 [J]. 工程科学学报, 2016, 38(1): 54-63.


Zhao L H, Sun Y, Zhang Y S. Static recrystallization behavior of the high strength steel 300M[J]. Chinese Journal of Engineering, 2016, 38(1): 54-63.


[4]Medina S F, Mancilla J E. Static recrystallization modelling of hot deformed steels containing several alloying elements [J]. ISIJ International, 1996, 36(8): 1070-1076.


[5]陈飞, 刘建生, 马越, . 30Cr2Ni4MoV 低压转子钢的静态再结晶行为 [J]. 塑性工程学报, 2016, 23(6): 151-156.


Chen F, Liu J S, Ma Y, et al. Static recrystallization behavior of 30Cr2Ni4MoV low-pressure rotor steel[J]. Journal of Plasticity Engineering, 2016, 23(6): 151-156.


[6]蔺永诚, 陈明松, 钟掘. 42CrMo钢形变奥氏体的静态再结晶 [J]. 中南大学学报:自然科学版, 2009, 40(2): 411-416.


Lin Y C, Chen M S, Zhong J. Static recrystallization behaviors of deformed 42CrMo steel[J]. Journal of Central South University:Science and Technology, 2009, 40(2): 411-416.


[7]赵立华, 张艳姝, 吴桂芳. GH4169高温合金的静态再结晶动力学 [J]. 材料热处理学报, 2015, 36(5): 217-222.


Zhao L H, Zhang Y S, Wu G F. Static recrystallization dynamic behavior of GH4169 superalloy[J]. Transactions of Materials and Heat Treatment, 2015, 36(5): 217-222.


[8]Lin Y C, Chen M S, Zhong J. Study of static recrystallization kinetics in a low alloy steel [J]. Computational Materials Science, 2009, 44(2): 316-321.


[9]任永海, 赵飞, 严琰. 18Ni马氏体时效钢加热过程晶粒长大模型 [J]. 材料热处理学报, 2013, 34(9): 90-94.


Ren Y H, Zhao F, Yan Y. Grain growth model of 18Ni maraging steel in heating process[J]. Transactions of Materials and Heat Treatment, 2013, 34(9): 90-94.


[10]陈建刚, 张建福, 卢凤双, . 18Ni马氏体时效钢强化方法概述 [J]. 金属功能材料, 2009, 16(4): 46-49.


Chen J G, Zhang J F, Lu F S, et al. Outline of strengthening ways in 18Ni maraging steel[J]. Metallic Functional Materials, 2009, 16(4): 46-49.


[11]Shamantha C R, Narayanan R, Iyer K J L, et al. Microstructural changes during welding and subsequent heat treatment of 18Ni (250-grade) maraging steel [J]. Materials Science and Engineering: A, 2000, 287(1): 43-51.


[12]Guo Z, Sha W, Li D. Quantification of phase transformation kinetics of 18 wt.% Ni C250 maraging steel [J]. Materials Science and Engineering:A, 2004, 373(1-2): 10-20.


[13]Laasraoui A, Jonas J .Prediction of temperature distribution, flow stress and microstructure during the multipass hot rolling of steel plate and strip [J]. ISIJ International, 1991, 31(1): 95-105.


[14]刘子龙, 王志蒙, 邢鹏达, . GCr15轴承钢静态再结晶行为 [J]. 钢铁研究学报, 2017, 29(8): 671-677.


Liu Z L, Wang Z M, Xing P D, et al. Static recrystallization behavior of GCr15 bearing steel[J]. Journal of Iron and Steel Research, 2017, 29(8): 671-677.


[15]Sun W P, Hawbolt E B. Comparison between static and metadynamic recrystallization-An application to the hot rolling of steels [J]. ISIJ International, 1997, 37(10):1000-1009.


[16]Cho S H,Kang K B, Jonas J Jet al. Effect of manganese on recrystallisation kinetics of niobium microalloyed steel [J]. Materials Science and Technology: MST: A publication of the Institute of Metals, 2002, 18(4):389-395.

服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9