网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
Ni-Co纳米镀层为中间层的TC4钛合金低温扩散连接
英文标题:Low temperature diffusion bonding on TC4 titanium alloy with Ni-Co nano-coating as intermediate layer
作者:王国峰 刘永康 刘青 张靖轩 王月林 
单位:哈尔滨工业大学 材料科学与工程学院 哈尔滨工业大学 金属精密热加工国防重点实验室 中国航发沈阳黎明航空发动机有限责任公司 沈阳飞机工业(集团)有限公司 
关键词:TC4钛合金 Ni-Co纳米镀层 低温扩散连接 剪切强度 扩散系数 
分类号:TG146.2
出版年,卷(期):页码:2022,47(11):239-245
摘要:

 针对钛合金在高温扩散连接时易变形、扩散设备及模具需求苛刻等问题,在TC4钛合金表面电沉积Ni-Co纳米镀层并将其作为中间层,以达到降低扩散连接温度的目的。研究了Co含量对Ni-Co纳米镀层微观组织及性能的影响规律,当Co含量为20 g·L-1时,镀层表面平滑且硬度最高,为537.6 HV,晶粒尺寸最小,为19.2 nm。当镀层厚度为2.5 μm、扩散连接温度为800 ℃时,焊接接头的剪切强度达到543.4 MPa,与不加中间层的焊接试样相比,剪切强度提高了61.4%。Ni-Co纳米镀层作为中间层提高了原子的扩散系数,实现了TC4钛合金在低温、低真空环境中的高质量扩散连接,对工程应用具有重要意义。

 

 For the problems that titanium alloys are easily deformed during high-temperature diffusion bonding, and the requirements of diffusion equipment and molds are strict, the Ni-Co nano-coating was electrodeposited on the surface of TC4 titanium alloy as an intermediate layer to reduce the temperature of diffusion bonding. Therefore, the influence laws of Co content on the microstructure and properties of Ni-Co nano-coating were studied. When Co content was 20 g·L-1, the surface of coating was smooth, the hardness was the highest which was 537.6 HV, and the grain size was the smallest which was 19.2 nm. When the thickness of coating was 2.5 μm and the diffusion bonding temperature was 800 ℃, the shear strength of welded joint reached 543.4 MPa, which was 61.4% higher than that of the welded sample without intermediate layer. As an intermediate layer, the Ni-Co nano-coating improves the diffusion coefficient of atoms and realizes the high-quality diffusion bonding of TC4 titanium alloy at low temperature and in low vacuum environment, which is of great significance for engineering application.  

基金项目:
民机专项科研项目(MJZ-2018-G-59)
作者简介:
作者简介:王国峰(1973-),男,博士,教授,E-mail:gfwang@hit.edu.cn
参考文献:

 [1]Kim Y, Kim E P, Song Y B, et al. Microstructure and mechanical properties of hot isostatically pressed Ti-6Al-4V alloy [J]. Journal of Alloys and Compounds, 2014, 603: 207-212.


[2]Hamilton B, Oppenheimer S, Dunand D C, et al. Diffusion bonding of Ti-6Al-4V sheet with Ti-6Al-4V foam for biomedical implant applications [J]. Metallurgical and Materials Transactions B, 2013, 44(6):1554-1559.


[3]Fernandus M J, Senthilkumar T, Balasubramanian V. Developing temperature-time and pressure-time diagrams for diffusion bonding AZ80 magnesium and AA6061 aluminium alloys [J]. Materials & Design, 2011, 32: 1651-1656.


[4]Jafarian M, Khodabandeh A, Manafi S. Evaluation of diffusion welding of 6061 aluminum and AZ31 magnesium alloys without using an interlayer [J]. Materials & Design, 2015, 65: 160-164.


[5]Wang Y Y, Luo G Q, Zhang J, et al. Effect of silver interlayer on microstructure and mechanical properties of diffusion-bonded Mg-Al joints [J]. Journal of Alloys and Compounds, 2012, 541: 458-461.


[6]Li X, Wang G F, Gu Y B, et al. Investigation on electrically-assisted diffusion bonding of Ti2AlNb alloy sheet by microstructural observation, mechanical tests and heat treatment [J]. Materials & Design, 2018,157: 351-361.


[7]周贤军,武永,陈明和, . TC4钛合金蜂窝芯的扩散连接/拉伸成形工艺 [J]. 机械工程材料,2021, 45(9): 88-93.


Zhou X J, Wu Y, Chen M H, et al. Diffusion bonding/stretching forming process of TC4 titanium honeycomb core [J]. Materials for Mechanical Engineering, 2021,45(9): 88-93.


[8]Wang Z B, Tao N R, Tong W P, et al. Diffusion of chromium in nanocrystalline iron produced by means of surface mechanical attrition treatment [J]. Acta Materials, 2003, 5114: 4319-4329.


[9]Wang Z B, Divinski S V, Luo Z P, et al. Revealing interfacial diffusion kinetics in ultra-fine-laminated Ni with low-angle grain boundaries [J]. Materials Research Letters, 2017, 5: 577-583.


[10]Lu Q, Chen Z, Zhang W J,et al. Low-temperature solid state bonding method based on surface Cu-Ni alloying microcones [J]. Applied Surface Science, 2013, 268: 368-372.


[11]Chen G Q, Yin Q X, Zhang G, et al. Fusion-diffusion electron beam welding of aluminum-lithium alloy with Cu nano-coating [J]. Materials & Design, 2020, 188: 108439.


[12]Wang Y, Yang Z W, Zhang L X, et al. Low-temperature diffusion brazing of actively metallized Al2O3 ceramic tube and 5A05 aluminum alloy [J]. Materials & Design, 2015,86: 328-337.


[13]Kim M S, Nishikawa H. Silver nanoporous sheet for solid-state die attach in power device packaging [J]. Scripta Materialia, 2014, 92: 43-46.


[14]Sónia Simes, Filomena Viana, Sofifia Ramos Aet al. Reaction zone formed during diffusion bonding of TiNi to Ti6Al4V using Ni/Ti nanolayers [J]. Journal of Materials Science, 2013, 4821:7718-7727.


[15]Liu C M, Lin H W, Chu Y C, et al. Low-temperature direct copper-to-copper bonding enabled by creep on highly (111)-oriented Cu surfaces [J]. Scripta Materialia, 2014, 78-79: 65-68.


[16]Rao M, Luo G Q, Zhang J, et al. Effect of Ni content in Cu1-xNix coating on microstructure evolution and mechanical properties of W/Mo joint via low-temperature diffusion bonding [J]. Journal of Materials Science & Technology, 2020, 54: 171-180.


[17]Mane A U, Shivashankar S A. MOCVD of cobalt oxide thin films: Dependence of growth, microstructure, and optical properties on the source of oxidation [J]. Journal of Crystal Growth, 2003, 254(3-4): 368-377.


[18]马军.电沉积法制备纳米晶Ni-Co合金镀层[J].电镀与精饰,2019,41(6):1-4.


Ma J. Preparation of nanocrystalline Ni-Co alloy coatings by electrodeposition [J]. Plating and Finishing,2019,41(6):1-4.


[19]Han JSheng G MZhou X Let al. Diffusion bonding of titanium alloy and stainless steel with surface nanocrystallization [J]. Rare Metal Materials & Engineering, 2010,39(1): 42-45.


[20]Li C, Si X Q, Bian S W, et al. Diffusion bonding of Ti and Zr at ultra-low temperature via surface nano-crystallization treatment [J]. Materials Science and Engineering: A, 2020,785:139413.


[21]蔡青山,段欣昀,朱文谭,.Ti/Ni复合中间层扩散连接钨与钢接头的断裂行为[J].中国有色金属学报,2021,31(7):1726-1736.


Cai Q S, Duan X Y, Zhu W T, et al. Fracture characterization of W-steel joints diffusion bonded with Ti/Ni composite interlayer [J]. The Chinese Journal of Nonferrous Metals, 2021,31(7):1726-1736.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9