网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
基于GA-Arrhenius本构模型的EA4T钢高温变形行为
英文标题:High-temperature deformation behavior for EA4T steel based on GA-Arrhenius constitutive model
作者:白杰 霍元明 何涛 任旭 卞志远 王宝雨 杜向阳 
单位:上海工程技术大学 机械与汽车工程学院 北京科技大学 机械工程学院 
关键词:EA4T钢 热压缩 高温变形行为 Arrhenius本构模型 遗传算法 
分类号:TG142
出版年,卷(期):页码:2022,47(11):246-253
摘要:

 通过Gleeble-3800热模拟实验机,对EA4T车轴钢分别在变形温度为970、1070和1170 ℃及应变速率为0.01、0.1和1.0 s-1的条件下进行热压缩实验,压缩至最大真应变为0.8。以得到的真应力-真应变实验数据为基础,分别建立了考虑应变补偿的Arrhenius本构模型和经过遗传算法优化后的Arrhenius本构模型(GA-Arrhenius),用于预测真应力与真应变的关系。为了验证GA-Arrhenius本构模型在真应力预测中的优越性,使用相关系数R、平均绝对误差AARE和均方根误差RMSE来说明其预测精度。实验结果表明:采用Arrhenius本构模型时,R=0.9970、AARE=3.4232%、RMSE=2.8773 MPa;采用GA-Arrhenius本构模型时,R=0.9982、AARE=2.6577%、RMSE=2.2110 MPa。说明相较Arrhenius本构模型,GA-Arrhenius本构模型能够更好地预测EA4T钢热成形过程中的真应力与真应变的关系,可以实现更高精度的有限元数值模拟。

 The thermal compression experiments of EA4T axle steel were conducted under the deformation temperatures of 970,1070 and 1170 ℃ and the strain rates of 0.01,0.1 and 1.0 s-1 by thermal simulation testing machine Gleeble-3800, and compressed to the maximum true strain of 0.8. Then, based on the obtained true stress-true strain experimental data, the Arrhenius constitutive model considering strain compensation and the Arrhenius constitutive model optimized by genetic algorithm (GA-Arrhenius) were established respectively to predict the relationship between true stress and true strain. In order to verify the superiority of GA-Arrhenius constitutive model in the prediction of true stress, correlation coefficient R, average absolute error AARE and root mean square error RMSE were used to illustrate its prediction accuracy. The experimental results show that when the Arrhenius constitutive model is used, R=0.9970, AARE=3.4232%, RMSE=2.8773 MPa, meanwhile, when the GA-Arrhenius constitutive model is used,R=0.9982, AARE=2.6577%, RMSE=2.2110 MPa, which shows that the GA-Arrhenius constitutive model can better predict the relationship between true stress and true strain in the thermal forming process of EA4T steel than the Arrhenius constitutive model, and achieve the higher precision finite element numerical simulation. 

基金项目:
国家重点研发计划资助项目(2018YFB1307900);国家自然科学基金青年基金资助项目(51805314)
作者简介:
作者简介:白杰(1996-),男,硕士研究生,E-mail:2216801589@qq.com;通信作者:霍元明(1984-),男,博士,副教授,E-mail:yuanming.huo@sues.edu.cn
参考文献:

 [1]王少杰,韩靖,曾伟,等.低温对ER8车轮钢力学性能的影响[J].材料研究学报,2018,32(6):401-408.


Wang S J, Han J, Zeng W, et al. Effect of low temperature on mechanical properties of ER8 steel for wheel rim[J]. Chinese Journal of Materials Research, 2018, 32(6):401-408.


[2]周计明, 齐乐华, 陈国定. 热成形中金属本构关系建模方法综述[J]. 机械科学与技术, 2005, 24(2):212-216.


Zhou J M, Qi L H, Chen G D. Investigation on the constitutive of materials forming in high temperature[J]. Mechanical Science and Technology, 2005, 24(2):212-216.


[3]Vo P, Jahazi M, Yue S, et al. Flow stress prediction during hot working of near-α titanium alloys[J]. Materials Science & Engineering A, 2007, 447(1-2):99-110.


[4]Lin J B, Wang Q D, Liu M P, et al. Finite element analysis of strain distribution in ZK60 Mg alloy during cyclic extrusion and compression[J]. Transactions of Nonferrous Metals Society of China, 2012, 22(8):1902-1906.


[5]Huo Y M, Bai Q, Wang B Y, et al. A new application of unified constitutive equations for cross wedge rolling of a high-speed railway axle steel[J]. Journal of Materials Processing Technology, 2015, 223:274-283.


[6]Huo Y, Lin J G, Bai Q, et al. Prediction of microstructure and ductile damage of a high-speed railway axle steel during cross wedge rolling[J]. Journal of Materials Processing Technology, 2017, 239:359-369.


[7]曹建国,王天聪,李洪波,. 基于Arrhenius改进模型的无取向电工钢高温变形本构关系[J]. 机械工程学报,2016,52(4):90-96,102.


Cao J G, Wang T C, Li H B, et al. High-temperature constitutive relationship of non-oriented electrical steel based on modified arrhenius model[J]. Journal of Mechanicals Engineering,2016,52(4):90-96,102.


[8]周峰,王克鲁,鲁世强,. Ti-22Al-24Nb-0.5Y合金流变行为及BP神经网络高温本构模型[J]. 材料工程,2019,47(8):141-146.


Zhou FWang K L, Lu S Q, et al. Flow behavior and BP neural network high temperature constitutive model of Ti-22Al-24Nb-0.5Y alloy[J]. Journal of Materials Engineering,2019,47(8):141-146.


[9]刘雪峰,马胜军,刘锦平,. Cu-12%A1合金高温压缩变形过程本构关系的BP神经网络模型[J]. 材料工程,2009,(1):10-14.


Liu X FMa S JLiu J P, et al.BP neural networks models for constitutive relationship during high temperature deformation process of Cu-12%Al alloy[J]. Journal of Materials Engineering2009,(1):10-14.


[10]Xu L, Chen L, Chen G J, et al. Hot deformation behavior and microstructure analysis of 25Cr3Mo3NiNb steel during hot compression tests[J]. Vacuum, 2017, 147:8-17.


[11]Quan G Z, Li G S, Wang Y, et al. A characterization for the flow behavior of as-extruded 7075 aluminum alloy by the improved Arrhenius model with variable parameters[J]. Materials Research, 2013, 16(1):19-27.


[12]Zhang D N, Shangguan Q Q, Xie C J. A modified Johnson-Cook model of dynamic tensile behaviors for 7075-T6 aluminum alloy[J]. Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics, 2014,619:186-194.


[13]Maheshwari A K, Pathak K K, Ramakrishnan N, et al. Modified Johnson-Cook material flow model for hot deformation processing[J]. Journal of Materials Science, 2010, 45(4):859-864.


[14]于鑫,韩芹会,刘春,. EA4T材料动态力学特性与本构关系模型[J]. 工具技术,2016,50(12):20-25.


Yu X, Han Q H, Liu C, et al. Dynamic mechanical properties and constitutive model establishment of EA4T axle materials[J]. Tool Engineering,2016,50(12):20-25.


[15]李定远,朱志武,卢也森. 冲击加载下42CrMo钢的动态力学性能及其本构关系[J]. 高压物理学报,2017,31(6):761-768.


Li D Y, Zhu Z W, Lu Y S. Mechanical properties and constitutive relation for 42CrMo steel under impact load[J]. Chinese Journal of High Pressure Physics, 2017,31(6):761-768.


[16]王敏婷,李学通,张祥玉,等. EA4T钢热变形行为及组织演变规律研究[J]. 塑性工程学报, 2018,25(1):224-232.


Wang M T, Li X T, Zhang X Y, et al. Investigation on hot deformation behavior and microstructure evolution of EA4T steel[J]. Journal of Plasticity Engineering, 2018,25(1):224-232.


[17]陈园园,李永堂,庞晓龙,. 考虑应变补偿的铸态42CrMo钢本构模型[J]. 锻压技术,2021,46(5):246-252.


Chen Y Y, Li Y T, Pang X Let al. Constitutive model of as-cast 42CrMo steel based on strain compensation[J]. Forging & Stamping Technology, 2021,46(5):246-252.


[18]江洋, 王宝雨, 霍元明,. 25CrMo4钢热压缩变形行为及流变应力本构方程[J]. 塑性工程学报,2020,27(5):167-173.


Jiang Y, Wang B Y, Huo Y M, et al. Thermal compressive deformation behavior and flow stress constitutive equation of 25CrMo4 steel[J]. Journal of Plasticity Engineering,,2020,27(5):167-173.


[19]Shi H, McLaren A J, Sellars C M, et al. Constitutive equations for high temperature flow stress of aluminium alloys[J]. Materials Science and Technology,1997,13(3):210-216.


[20]Sellars C M, McTegart W J. On the mechanism of hot deformation[J]. Acta Metallurgica, 1966, 14(9):1136-1138.


[21]Cai J, Li F G, Liu T Y, et al. Constitutive equations for elevated temperature flow stress of Ti-6Al-4V alloy considering the effect of strain[J]. Materials & Design, 2011, 32(3):1144-1151.


[22]Deng C Y, Dong S J, Tan W. Modelling for the flow behavior of a new metastable beta titanium alloy by GA-based Arrhenius equation[J]. Materials Research Express, 2019,6(2):26544.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9