[1]王少杰,韩靖,曾伟,等.低温对ER8车轮钢力学性能的影响[J].材料研究学报,2018,32(6):401-408.
Wang S J, Han J, Zeng W, et al. Effect of low temperature on mechanical properties of ER8 steel for wheel rim[J]. Chinese Journal of Materials Research, 2018, 32(6):401-408.
[2]周计明, 齐乐华, 陈国定. 热成形中金属本构关系建模方法综述[J]. 机械科学与技术, 2005, 24(2):212-216.
Zhou J M, Qi L H, Chen G D. Investigation on the constitutive of materials forming in high temperature[J]. Mechanical Science and Technology, 2005, 24(2):212-216.
[3]Vo P, Jahazi M, Yue S, et al. Flow stress prediction during hot working of near-α titanium alloys[J]. Materials Science & Engineering A, 2007, 447(1-2):99-110.
[4]Lin J B, Wang Q D, Liu M P, et al. Finite element analysis of strain distribution in ZK60 Mg alloy during cyclic extrusion and compression[J]. Transactions of Nonferrous Metals Society of China, 2012, 22(8):1902-1906.
[5]Huo Y M, Bai Q, Wang B Y, et al. A new application of unified constitutive equations for cross wedge rolling of a high-speed railway axle steel[J]. Journal of Materials Processing Technology, 2015, 223:274-283.
[6]Huo Y, Lin J G, Bai Q, et al. Prediction of microstructure and ductile damage of a high-speed railway axle steel during cross wedge rolling[J]. Journal of Materials Processing Technology, 2017, 239:359-369.
[7]曹建国,王天聪,李洪波,等. 基于Arrhenius改进模型的无取向电工钢高温变形本构关系[J]. 机械工程学报,2016,52(4):90-96,102.
Cao J G, Wang T C, Li H B, et al. High-temperature constitutive relationship of non-oriented electrical steel based on modified arrhenius model[J]. Journal of Mechanicals Engineering,2016,52(4):90-96,102.
[8]周峰,王克鲁,鲁世强,等. Ti-22Al-24Nb-0.5Y合金流变行为及BP神经网络高温本构模型[J]. 材料工程,2019,47(8):141-146.
Zhou F,Wang K L, Lu S Q, et al. Flow behavior and BP neural network high temperature constitutive model of Ti-22Al-24Nb-0.5Y alloy[J]. Journal of Materials Engineering,2019,47(8):141-146.
[9]刘雪峰,马胜军,刘锦平,等. Cu-12%A1合金高温压缩变形过程本构关系的BP神经网络模型[J]. 材料工程,2009,(1):10-14.
Liu X F,Ma S J,Liu J P, et al.BP neural networks models for constitutive relationship during high temperature deformation process of Cu-12%Al alloy[J]. Journal of Materials Engineering,2009,(1):10-14.
[10]Xu L, Chen L, Chen G J, et al. Hot deformation behavior and microstructure analysis of 25Cr3Mo3NiNb steel during hot compression tests[J]. Vacuum, 2017, 147:8-17.
[11]Quan G Z, Li G S, Wang Y, et al. A characterization for the flow behavior of as-extruded 7075 aluminum alloy by the improved Arrhenius model with variable parameters[J]. Materials Research, 2013, 16(1):19-27.
[12]Zhang D N, Shangguan Q Q, Xie C J. A modified Johnson-Cook model of dynamic tensile behaviors for 7075-T6 aluminum alloy[J]. Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics, 2014,619:186-194.
[13]Maheshwari A K, Pathak K K, Ramakrishnan N, et al. Modified Johnson-Cook material flow model for hot deformation processing[J]. Journal of Materials Science, 2010, 45(4):859-864.
[14]于鑫,韩芹会,刘春,等. EA4T材料动态力学特性与本构关系模型[J]. 工具技术,2016,50(12):20-25.
Yu X, Han Q H, Liu C, et al. Dynamic mechanical properties and constitutive model establishment of EA4T axle materials[J]. Tool Engineering,2016,50(12):20-25.
[15]李定远,朱志武,卢也森. 冲击加载下42CrMo钢的动态力学性能及其本构关系[J]. 高压物理学报,2017,31(6):761-768.
Li D Y, Zhu Z W, Lu Y S. Mechanical properties and constitutive relation for 42CrMo steel under impact load[J]. Chinese Journal of High Pressure Physics, 2017,31(6):761-768.
[16]王敏婷,李学通,张祥玉,等. EA4T钢热变形行为及组织演变规律研究[J]. 塑性工程学报, 2018,25(1):224-232.
Wang M T, Li X T, Zhang X Y, et al. Investigation on hot deformation behavior and microstructure evolution of EA4T steel[J]. Journal of Plasticity Engineering, 2018,25(1):224-232.
[17]陈园园,李永堂,庞晓龙,等. 考虑应变补偿的铸态42CrMo钢本构模型[J]. 锻压技术,2021,46(5):246-252.
Chen Y Y, Li Y T, Pang X L,et al. Constitutive model of as-cast 42CrMo steel based on strain compensation[J]. Forging & Stamping Technology, 2021,46(5):246-252.
[18]江洋, 王宝雨, 霍元明,等. 25CrMo4钢热压缩变形行为及流变应力本构方程[J]. 塑性工程学报,2020,27(5):167-173.
Jiang Y, Wang B Y, Huo Y M, et al. Thermal compressive deformation behavior and flow stress constitutive equation of 25CrMo4 steel[J]. Journal of Plasticity Engineering,,2020,27(5):167-173.
[19]Shi H, McLaren A J, Sellars C M, et al. Constitutive equations for high temperature flow stress of aluminium alloys[J]. Materials Science and Technology,1997,13(3):210-216.
[20]Sellars C M, McTegart W J. On the mechanism of hot deformation[J]. Acta Metallurgica, 1966, 14(9):1136-1138.
[21]Cai J, Li F G, Liu T Y, et al. Constitutive equations for elevated temperature flow stress of Ti-6Al-4V alloy considering the effect of strain[J]. Materials & Design, 2011, 32(3):1144-1151.
[22]Deng C Y, Dong S J, Tan W. Modelling for the flow behavior of a new metastable beta titanium alloy by GA-based Arrhenius equation[J]. Materials Research Express, 2019,6(2):26544.
|