网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
挤压速度对铝合金内螺纹管齿部组织演变的影响
英文标题:Influence of extrusion speed on microstructure evolution of teeth for aluminum alloy internal thread tube
作者:李旭东 黄东男 熊振 黎华杰 纪维玥 
单位:内蒙古工业大学 中铝材料应用研究院有限公司 
关键词:TG379 
分类号:
出版年,卷(期):页码:2022,47(10):133-144
摘要:
挤压速度和温度作为挤压的关键工艺,直接影响制品的组织性能。为此采用6063铝合金为实验材料,以铝合金内螺纹管为研究对象,研究了挤压速度(60~120 mm·min-1)对铝合金内螺纹管齿形质量和组织演变的影响。结果表明,在恒定的挤压温度(460 ℃)下,随着挤压速度的升高,齿槽角α逐渐减小,齿槽角β先减小后增大,在挤压速度为60 mm·min-1时α和β取得最大值,分别为142.67°和148.67°。通过显微组织分析,发现齿部横截面主要为等轴晶。随着挤压速度的升高,齿部晶粒尺寸先减小后增大,在挤压速度为120 mm·min-1时取得最大值,为13.51 μm。随着挤压速度的升高,齿部出现变形织构和再结晶织构。从螺纹齿成形质量考虑,60 mm·min-1为最适宜的挤压速度。

 As the key process parameters of extrusion, extrusion speed and temperature directly affect the microstructure and properties of product. Therefore, for internal thread tube of 6063 aluminum alloy, the influences of extrusion speed (60-120 mm·min-1) on the tooth profile quality and microstructure evolution of aluminum alloy internal thread tube were studied. The results show that at a constant extrusion temperature of 460 ℃, with the increasing of extrusion speed, the tooth groove angle α gradually decreases and the tooth groove angle β first decreases and then increases, and the maximum values of α and β are 142.67° respectively when the extrusion speed is 60 mm·min-1. Through microstructure analysis, it is found that the cross section of teeth is mainly equiaxed. With the increasing of extrusion speed, the grain size of teeth first decreases and then increases, and the maximum value is 13.51 μm when the extrusion speed is 120 mm·min-1. With the increasing of extrusion speed, the deformed texture and recrystallized texture appear in the teeth. Considering the forming quality of thread teeth, 60 mm·min-1 is the most suitable extrusion speed.

基金项目:
国家自然科学基金地区科学基金资助项目(5186050063)
作者简介:
李旭东(1995-),男,硕士研究生,E-mail:928835473@qq.com;通信作者:黄东男(1979-),男,博士,教授,E-mail:huangdongnan@cmari.com
参考文献:

[1]汪厚泰. 高效空调换热器内螺纹铜管的研究及应用[J]. 制冷与空调, 2010, 10(4): 27-34.

Wang H T. Research and application of innergrooved copper tube for high efficiency airconditioning heat exchangers [J]. Refrigeration and Air Conditioning, 2010, 10(4): 27-34.

[2]Zheng N, Liu P, Shan F, et al. Heat transfer enhancement in a novel internally grooved tube by generating longitudinal swirl flows with multi-vortexes[J]. Applied Thermal Engineering, 2016, 95: 421-432.

[3]Celik S, Nsofor E C. Performance analysis of a refrigerating system with a groovedtube evaporator[J]. Applied Thermal Engineering, 2014, 73(1): 745-750.

[4]Wang D, Tian R, Li L, et al. Heat transfer of R134a in a horizontal internally ribbed tube and in a smooth tube under super critical pressure[J]. Applied Thermal Engineering, 2020, 173: 15208.

[5]Pirbastami S, Moujaes S F, Mol S G. Computational fluid dynamics simulation of heat enhancement in internally helical grooved tubes[J]. International Communications in Heat Mass Transfer, 2016, 73: 25-32.

[6]Hwang Y M, Chang C N. Hot extrusion of hollow helical tubes of magnesium alloys[J]. Procedia Engineering, 2014, 81: 2249-2254.

[7]Boyer R R, Williams J C. Developments in research and applications in the titanium industry in the USA[A]. The 12th World Conference on Titanium [C]. Beijing, 2011.

[8]蔡运亮. 内螺纹铝管综合性能及应用前景分析[J]. 制冷与空调, 2014, 14(2): 11-14.

Cai Y L. Overall performance and application prospect analysis of innergrooved aluminum tube [J]. Refrigeration and Air Conditioning, 2014, 14(2): 11-14.

[9]Joslin A E. Grooving device[P]. U.S., 3473359, 1969-10-21.

[10]Fujie K, Nakayama W, Kuwahara H, et al. Heattransfer wall for condensation and method of manufacturing the same[P]. U.S., 4195688, 1980-04-01.

[11]彭孙鸿, 邓尔康, 刘彩玲, . T2钢内螺纹管的研制[J]. 特殊钢, 1999, 20(6): 48-50.

Peng S H, Deng E K, Liu C L, et al. Development of multiple-strand ribbed tube of steel T2[J]. Special Steel, 1999, 20(6): 48-50.

[12]Palengat M C, Grégory Favier, Denis Louche, et al. Cold drawing of 316l stainless steel thinwalled tubes: experiments and finite element analysis[J]. International Journal of Mechanical Sciences, 2013, 70: 69-78.

[13]Bella P, Bucek P, Ridzon M, et al. Comparison of die geometry for cold drawing of multi-rifled steel tubes[J]. Metalurgija, 2019, 58(3-4): 323-325.

[14]Necpal M, Martinkovicˇ M. Finite element modelling of cold drawing inner finned tube[J]. Annals of DAAAM Proceedings, 2019, 30):724-732.

[15]高辻則夫, 村上哲, 長谷川豊, . 内面螺旋溝付き押出し管の成形[J]. 塑性と加工, 2008, 49(574): 1086-1090.

Norio Takatsuji, Satoshi Murakami, Yutaka Hasegawa, et al. Molding of extruded pipe with internal spiral groove[J]. Plasticity and Processing, 2008, 49(574): 1086-1090.

[16]Moroi T, Kuboki T, Murata M. Effect of tube wall thickness in joining of aluminum tube and holed rib by extrusion[J]. Key Engineering Materials, 2009, 424: 121-128.

[17]星野倫彦. 押出し[J]. 塑性と加工, 2015, 56(655): 652-657.

Michihiko Hoshino. Extrusion[J]. Plasticity and Processing, 2015, 56(655): 652-657.

[18]株式会社UACJ. 「押出し加工によって生み出される多彩なアルミニウム製品」(株)UACJのアルミニウム押出し技術[J]. 塑性と加工, 2015, 56(654): 551-556.

UACJ Co., Ltd. “Various aluminum products created by extrusion”-Aluminum extrusion technology of UACJ Corporation[J]. Plasticity and Processing,2015, 56(654): 551-556.

[19]白石光, 新川真, 田本育. 高ねじれ量付与を可能とするヘリカルフィン付き薄肉円管のフレキシブル押出し加工システムの開発[J]. 塑性と加工, 2017, 58(674): 229-231.

Hikaru Shiraishi, Makoto Shinkawa, Iku Tamoto. Development of flexible extrusion system for thin circular tubes with helical fins capable of giving high torsion [J]. Plasticity and Processing, 2017, 58(674): 229-231.

[20]柳瑞清. 内螺纹铝管材挤压模具结构参数确定[J]. 锻压机械,1997(6):47-48.

Liu R Q. Parameter determination of dies for extruding aluminium tube with internal screw [J]. Metalforming Machinery, 1997, (6):47-48.

[21]王飞. 连续挤压成形内螺纹铝管工艺研究及装备改造[D]. 昆明: 昆明理工大学,2012.

Wang F. Technology Research and Equipment Transformation of Continuous Extrusion Forming Internal Thread Aluminum Pipe [D]. Kunming: Kunming University of Science and Technology, 2012.

[22]朱圆斌. 连续挤压成形厚壁 “Ω”形微槽道铝热管工艺研究[D]. 昆明: 昆明大学,2013.

Chen Z Y B. Research on the Process of Continuous Extrusion Forming of “Ω” Shaped Microchannel Aluminum Heat pipe [D]. Kunming: Kunming University, 2013.

[23]GB/T 20928—2020, 无缝内螺纹铜管[S].

GB/T 20928—2020, Seamless inner grooved copper tube[S].

[24]GB/T 4436—2012,铝及铝合金管材外形尺寸及允许偏差[S].

GB/T 4436—2012, Wrought aluminum and aluminum alloy tubes—Dimensions and deviations[S].

[25]朱峰, 伍超群, 刘英坤. 电解抛光在6063铝合金金相试样制备中的应用[J]. 理化检验:物理分册, 2010, 46(11): 692-694,700.

Zhu F, Wu C Q, Liu Y K. Application of electrolytic polishing in preparation of metallographic specimens of 6063 aluminum alloy[J]. Physical and Chemical Testing:Physics, 2010, 46(11): 692-694,700.

[26]Fan X H, Tang D, Fang W L, et al. Microstructure development and texture evolution of aluminum multiport extrusion tube during the porthole die extrusion[J]. Materials Characterization, 2016, 118: 468-480.

服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9