网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
大型薄壁U形波纹管轴向低压压形的形状精度
英文标题:Shape accuracy for large thin-wall U-shaped bellows under axial low pressure hydroforming
作者:杨程 李斯棠 孙磊 林才渊 胡德友 初冠南 
单位:南京航空航天大学 哈尔滨工业大学(威海) 哈工大 (威海) 创新创业园有限责任公 天津航天长征火箭制造有限公司 
关键词:TG394 
分类号:波纹管;轴向低压压形;形状精度;初始内压;最终内压
出版年,卷(期):页码:2022,47(10):145-153
摘要:

为了克服大直径U形波纹管液压成形时成形内压过高、设备吨位要求大等缺点,提出了一种轴向低压压形工艺成形该类零件。通过实验与数值模拟分析相结合的方式,分析了初始内压、最终内压和轴向进给3种工艺参数对形状精度(圆角填充、回弹)的影响。对于圆角填充,初始内压和轴向进给的增大,会导致管坯在波峰圆角区贴模更紧密,在波谷圆角区脱模程度加重,而当最终内压较小时,波峰的填充不完全。对于回弹,初始内压和轴向进给的增大以及最终内压的减小均有利于抑制回弹。最终得出了最佳工艺参数组合,即初始内压为1.2 MPa、最终内压为4.0 MPa、轴向进给为31.5 mm。同时,对波纹管的应力状态进行分析,得出了回弹产生的原因,并通过模具修正对回弹进行补偿。最终,实验成形了尺寸精度在0.5 mm以内、内径为Φ340 mm、壁厚为1.5 mm的U形波纹管,验证了工艺的可行性。

In order to overcome the disadvantages of high internal pressure and large equipment tonnage during the hydroforming of U-shaped bellows with large diameter, an axial low pressure hydroforming process was proposed to produce this part, and the influences of initial internal pressure, final internal pressure and axial feeding on the shape accuracy (corner filling and springback) were analyzed by combining finite element simulation analysis and experiment. Then, for the corner filling, the increase of initial internal pressure and axial feeding caused the tube to adhere to the die more closely in the corner area of wave crest, and the degree of demoulding in the corner area of wave valley was increased. When the final internal pressure was small, the filling of wave crest was incomplete. For the springback, the increase of initial internal pressure and axial feeding and the decrease of final internal pressure were beneficial to restrain springback. And the best process parameters were the initial internal pressure of 1.2 MPa, the final internal pressure of 4.0 MPa and the axial feeding of 31.5 mm. At the same time, the stress state of bellows was analyzed, and the reason of springback was obtained, then the springback was compensated by die modification. Finally, the U-shaped bellows with the inner diameter of Φ340 mm, the wall thickness of 1.5 mm and the dimension accuracy of less than 0.5 mm were formed experimentally, which verifies the feasibility of the process.

基金项目:
国家基金委航天联合基金重点项目(U1937205);国家自然科学基金面上项目 (51475121);山东省重大科技创新工程(2020CXGC010303)
作者简介:
杨程(1985-),男,硕士,高级工程师,E-mail:szhhit@163.com;通信作者:初冠南 (1979-),男,博士,教授,E-mail:chuguannan@hit.edu.cn
参考文献:

[1]马伟, 李德雨, 钟玉平. 波纹管的发展与应用[J]. 河南科技大学学报:自然科学版, 2004, 25(4): 28-31.

Ma W, Li D Y, Zhong Y P. Development and application of bellows[J]. Journal of Henan University of Science and Technology: Natural Science, 2004, 25(4): 28-31.

[2]杨玲. 膨胀节波纹管优化设计研究[D]. 重庆: 西南农业大学, 2003.

Yang L. Optimization Design Research on Expansion Joint Bellows[D].Chongqing: Southwest University, 2003.

[3]Lin C, Chu G, Sun L, et al. Radial hydro-forging bending: A novel method to reduce the springback of AHSS tubular component[J]. International Journal of Machine Tools and Manufacture, 2021, 160: 1-20.

[4]肖巧. 柔性环形金属波纹管旋压-滚压联合精密成型技术研究[D]. 秦皇岛:燕山大学, 2019.

Xiao Q. Study on Combined Spinning-rolling Precision Molding Technology for Flexible Annular Metal Bellows[D]. Qinhuangdao: Yanshan University, 2019.

[5]Belyaev A K, Zinovieva T V, Smirnov K K. Theoretical and experimental studies of the stress-strain state of expansion bellows as elastic shells[J]. St. Petersburg Polytechnical University Journal: Physics and Mathematics, 2017, 3(1): 7-14.

[6]蔡善祥, 李建国, 裴信廉. JB 4731—93《压力容器波形膨胀节》标准介绍()[J]. 压力容器, 1993, 18(5): 12-26.

Cai S X, Li J G, Pei X L. JB 4731—93“Introduction to the bellows standard for pressure vessels”[J]. Pressure Vessel Technology, 1993, 18(5): 12-26.

[7]任明辉, 王春炎, 田鑫, . 波纹管的微束等离子焊接与制造技术[J]. 焊接, 2012, 7(7): 51-51.

Ren M H, Wang C Y, Tian X, et al. Microbeam plasma welding and manufacturing technology of metal bellows[J]. Welding & Joining, 2012, 7(7): 51-51.

[8]黄乃宁. 特种金属波纹管研制[D]. 沈阳: 沈阳工业大学, 2003.

Huang N N. Research on Metal Bellows of Special Purpose[D]. Shenyang: Shenyang University of Technology, 2003.

[9]曹宝璋, 陈永忠, 俞彬,. 金属波纹管成型方法的分析与比较[J]. 管道技术与设备, 2001, 78(2): 11-15.

Cao B Z, Chen Y Z, Yu B, et al. Analysis and comparison of shaping methods of metal bellow[J]. Pipeline Technique and Equipment, 2001, 78(2): 11-15.

[10]余龙兵. 大口径弹性金属波纹管成型机床及其关键技术的研究[D]. 武汉:武汉工程大学, 2015.

Yu L B. The Study of Large Caliber Elastic Metal Bellows Forming Machine Tool and Its Key Technology[D]. Wuhan: Wuhan Institute of Technology, 2015.

[11]Mirzaali M, Liaghat G H, Naeini H M, et al. Optimization of tube hydroforming process using simulated annealing algorithm[J]. Procedia Engineering, 2011, (10): 3012-3019.

[12]苏明. 金属波纹管液压成形工艺优化系统开发[D]. 沈阳:沈阳工业大学, 2017.

Su M. System Development for Optimizing Metal Bellows Hydroforming[D]. Shenyang: Shenyang University of Technology, 2017.

[13]Faraji G, Mashhadi M M, Norouzifard V. Evaluation of effective parameters in metal bellows forming process[J]. Journal of Materials Processing Technology, 2009, 209(7): 3431-3437.

[14]Lin Y S, Hsu Y C, Shih J C. Investigation of forming characteristics in bellows hydroforming[A]. International Conference on Computer Engineering & Technology[C]. Chengdu, 2010.

[15]刘静, 王有龙, 李兰云, . 工艺参数对双层 304 不锈钢波纹管液压胀形的影响[J].塑性工程学报,201724(4): 11-20.

Liu J, Wang Y L, Li L Y, et al. Influence of process parameters on hydroforming forbi-layered 304 stainless steel bellows[J]. Journal of Plasticity Engineering, 2017, 24(4): 11-20.

[16]刘静, 王有龙, 李兰云, . 多层U形不锈钢波纹管液压胀形仿真分析[A]. 第十四届全国膨胀节学术会议论文集-膨胀节技术进展[C]. 合肥, 2016.

Liu J, Wang Y L, Li L Y, et al. FE simulation of multi-layered U-shaped stainless-steel bellows in hydroforming[A]. Proceedings of the 14th Expansion Joint Meeting-Expan-sion Joint Technology Progress[C]. Hefei, 2016.

[17]李慧芳, 叶梦思, 钱才富, . 多层多波Ω形波纹管液压成形的数值模拟[J]. 压力容器, 2018, 35(6): 70-77.

Li H F, Ye M S, Qian C F, et al. Numerical simulation of hydraulic forming of a multi-layered and multi-corrugated Ω-shape bellows[J]. Pressure Vessel Technology, 2018, 35(6): 70-77.

[18]Liu J, Lyu Z, Liu Y, et al. Deformation behaviors of four-layered U-shapedmetallic bellows in hydroforming[J]. Chinese Journal of Aeronautics, 2020, 12: 3479-3494.

[19]彭赫力, 张小龙, 李中权,. 波纹管液压成形数值模拟和实验[J]. 航天制造技术, 2015, (2): 23-30.

Peng H L, Zhang X L, Li Z Q, et al. Numerical simulation and experiment of bellows hydroforming[J]. Aerospace Manufacturing Technology, 2015, (2): 23-30.

[20]王彪. 5A03铝合金波纹管轴向低压压形工艺[D]. 哈尔滨: 哈尔滨工业大学, 2021.

Wang B. Axial Low Pressure Forming Process of 5A03 Aluminum Alloy Bellows[D]. Harbin: Harbin Institute of Technology, 2021.

[21]Lin C Y,Chun G N,Sun L, et al. Radial hydro-forging bending:A novel method to reduce the springback of AHSS tubular component[J]. International Journal of Machint Tools and Manufacture, 2021, 160:103650.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9