网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
锻造操作机行走系统性能仿真分析
英文标题:Simulation analysis on performance of walking system for forging manipulator
作者:马志刚 杨志怀 张晓丽 王生金 王宏亮 魏海涛 
单位:兰州兰石集团有限公司 兰州兰石能源装备工程研究院有限公司 
关键词:锻造操作机 行走系统 联合仿真 行走定位精度 启停稳定性 
分类号:TH137
出版年,卷(期):页码:2022,47(10):203-207
摘要:

锻造操作机的行走定位精度和启停稳定性一直以来是大型锻造设备中的重要参数。通过搭建5 t锻造操作机行走动力学和液压系统的仿真模型,利用AMESimADAMS联合仿真的方式,采用更为准确的负载来研究操作机行走系统的主要液压元件对行走定位精度和启停稳定性的影响。联合仿真结果表明,液压管道、行走溢流阀、泵头溢流阀、比例换向阀等元件均能对锻造操作机的行走定位精度和启停稳定性产生一定的影响,为了提高行走定位精度及启停稳定性,应综合考虑液压系统中各元件的影响,对液压元件进行合理匹配。此研究可为锻造操作机行走系统的后续研发设计及优化改进提供理论依据。

The travel positioning accuracy and start-stop stability of forging manipulator are always important parameters in large forging equipment. Therefore, by building the simulation model of walking dynamics and hydraulic system for 5 t forging manipulator, using the AMESim-ADAMS co-simulation method, the influences of main hydraulic components of manipulator walking system on the travel positioning accuracy and start-stop stability were studied by more accurate load. The co-simulation results show that hydraulic pipeline, travel relief valve, pump head relief valve and proportional directional valve all have certain influences on the travel positioning accuracy and start-stop stability of forging manipulator. In order to improve the travel positioning accuracy and start-stop stability, the influence of each component in the hydraulic system should be considered comprehensively, and the hydraulic components should be matched reasonably. Thus, it can provide a theoretical basis for the subsequent development, design and optimization of the walking system for forging manipulator.  

基金项目:
作者简介:
马志刚(1989-),男,学士,工程师,E-mail:ma_zhigang@126.com
参考文献:

[1]翟富刚,李瑞阳,袁龙,等.双锻造操作机大车行走系统控制方法探索[J].液压与气动,2019,(11):1-8.


Zhai F G, Li R Y, Yuan L, et al. Analysis on control method of walking system of dual forging manipulators[J]. Chinese Hydraulics & Pneumatics, 2019,(11):1-8.


[2]陈柏金,徐明昊,张红颖.液压锻造操作机大车行走机构的位置控制系统[J].华中科技大学学报:自然科学版,2011, 39(8):6-9.


Chen B J, Xu M H, Zhang H Y. Position control system for hydraulic forging manipulator cart movement mechanism[J]. Journal of Huazhong University of Science and Technology: Nature Science Edition, 2011,39(8):6-9.


[3]李向阳,田富,闫周,.100T锻造操作机行走驱动液压系统设计[J].机床与液压,2018, 46(16):48-51.


Li X Y, Tian F, Yan Z, et al. Design of hydraulic system of 100T forging manipulator driving parts[J]. Machine Tool & Hydraulics,2018, 46(16):48-51.


[4]付永领,祁晓野.LMS Imagine.Lab AMESim系统建模和仿真参考手册[M].北京:北京航空航天大学出版社,2011.


Fu Y L, Qi X Y. Reference Manual of LMS Imagine.Lab AMESim System Modeling and Simulation [M]. Beijing: Beihang University Press, 2011.


[5]桑育鑫.重载锻造操作机大车行走精度控制的研究[D].兰州:兰州交通大学,2017.


Sang Y X. Research on the Preision of Cart Movement Control of Heavy Load Forging Manipulator[D]. Lanzhou: Lanzhou Jiaotong University, 2017.


[6]张伟,李淳潮,李志远,.基于AMESim的电/气比例压力阀仿真与试验[J].液压与气动,2020,(3):65-70.


Zhang W, Li C C, Li Z Y, et al. Simulation and test for electropneumatic proportional pressure valve based on AMESim[J].Chinese Hydraulics & Pneumatics,2020,(3):65-70.


[7]穆天驰,张东民,周伟民.基于AMESim的同步柔性冲压装置控制系统仿真分析[J].液压与气动, 2021,(2):134-138.


Mu T C, Zhang D M, Zhou W M. Simulation analysis of control system of synchronous flexible stamping device based on AMESim[J]. Chinese Hydraulics & Pneumatics,2021,(2):134-138.


[8]桑勇,邵利来,段富海.基于AMESim液压系统管路动态特性的研究[J].液压气动与密封,2018,38(2):16-21.


Sang Y, Shao L L, Duan F H. The research on pipeline dynamic characteristics of hydraulic system based on AMESim[J]. Hydraulics Pneumatics & Seals, 2018,38(2):16-21.


[9]陈雨洋,李靖祥,杨昌群,.基于AMESim的轴流先导式水击卸压阀动态特性分析[J].液压与气动,2020,(11):8-14.


Chen Y Y, Li J X, Yang C Q, et al. Analysis of Dynamic characteristics of axial pilotoperated surge relief valve based on AMESim[J]. Chinese Hydraulics & Pneumatics,2020,(11):8-14.


[10]唐海斌,吴广丰,刘军.基于AMESim的换轨车液压系统振动仿真[J].液压与气动,2020,(10):162-166.


Tang H B, Wu G F, Liu J, et al. Simulation on hydraulic system vibration of track relaying cars[J]. Chinese Hydraulics & Pneumatics,2020,(10):162-166.


[11]王凯,李洪文,陈建国,等.基于AMESim ADAMS 的超静定液压支架液压系统联合仿真[J].机床与液压,202048(5)171-174.


Wang KLi H WChen J G,et al.Cosimulation hyperstatic hydraulic support system based on AMESim and ADAMS[J]. Machine Tool & Hydraulics,2020,48(5):171-174.


[12]翟富刚.液压锻造操作机多学科协同仿真研究[D].秦皇岛:燕山大学,2011.


Zhai F G. Multidisciplinary Collaborative Simulation Research on Hydraulic Forging Manipulator[D]. Qinhuangdao: Yanshan University, 2011.

服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9