网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
电弧熔丝增材随动锤击精整-消应力过程对装置 结构变形的影响
英文标题:Influence of wire-arc additive on device structure deformation follow-up hammering finishing-stress relief process
作者:蒋立鹤1 2 3 刘仁培1 蒋倩2 3 
单位:1.南京航空航天大学 材料科学与技术学院 2.江苏省船舶动力系统零件先进制造工程技术研究中心  3.南京中远海运船舶设备配件有限公司 
关键词:电弧熔丝增材制造 随动锤击 锤击气压 梁结构 瞬态动力学 
分类号:TG439.2
出版年,卷(期):页码:2022,47(12):109-114
摘要:

 电弧熔丝增材随动锤击精整-消应力过程对增材装置整体结构变形存在一定的影响,为保证增材设备的使用精度,分析了不同锤击气压、锤击位置对设备结构变形的影响。解析计算出锤击气压与锤击速度的关系,建立了大型电弧增材设备框梁结构承载有限元分析模型,分析、确立了锤击过程中横梁受到的锤击反力,并根据工作位置、锤击气压的不同设计了15种工况,对各工况进行了瞬态动力学分析。分析结果显示,在各锤击气压下,锤击对横梁重力方向的变形影响最大,最大变形区域出现在横梁中央部位。该研究为设备后续的优化提供了依据,具有一定的工程应用价值。

 The wire-arc additive follow-up hammering finishing-stress relief process has a crucial influence on the overall structural deformation of additive device. Therefore, in order to ensure the use accuracy of additive device, the influences of different hammering air pressures and hammering positions on the deformation of device structure were analyzed. Then, the relationship between hammering air pressure and hammering velocity was calculated analytically, and the finite element analysis model for the bearing capacity of frame-beam structure for large wire-arc additive device was established to analyze and determine the hammering reaction force on the beam during the hammering process. Furthermore, based on the different working positions and hammering air pressures, fifteen working conditions were designed, and the transient dynamic analysis was carried out for each working condition. The analysis results show that under each hammering air pressure, the impact of hammering on the deformation of beam along the gravity direction is the greatest, and the largest deformation region appears in the center of beam. Thus, the research provides a basis for the subsequent optimization of device and has certain engineering application value.

基金项目:
江苏省工程技术研究中心项目(BM2021214)
作者简介:
蒋立鹤(1991-),男,硕士研究生,工程师 E-mail:516032103@qq.com 通信作者:刘仁培(1962-),男,硕士,教授 E-mail:lrp_msc@nuaa.edu.cn
参考文献:

 [1]王桂兰, 符友恒,梁立业, .电弧微铸轧复合增材新方法制造高强度钢零件[J].热加工工艺,2015,4413):24-27.


 


Wang G L, Fu Y H, Liang L Y, et al. New hybrid additive manufacturing method for forming high strength parts by weld-rolling[J]. Hot Working Technology2015,4413):24-27.


 


[2]何仲赟, 洪军,卢秉恒,等.金属电弧喷涂成型快速制模关键技术与应用[J].塑性工程学报,2008,152):65-69.


 


He Z Y, Hong J, Lu B H, et al. Key technologies and application of metal arc spray tooling[J]. Journal of Plasticity Engineering, 2008,15(2):65-69.


 


[3]卢顺, 周杰,李梦瑶,等.双金属层堆焊法制备铸钢基体大型锻模[J].金属热处理,20133810):58-61.


 


Lu S, Zhou J, Li M Y, et al. Large forging die manufactured with dual hardfacing metal layer on cast steel matrix[J]. Heat Treatment of Metals, 2013,38(10):58-61.


 


[4]Fuhrich T, Berger P, Hügel H. Effect in laser deep penetration welding of steel [J]. Journal of Laser Applications, 2001, 13: 178-186.


 


[5]李权, 王福德,王国庆, .航空航天轻质金属材料电弧熔丝增材制造技术[J].航空制造技术,2018,61(3):74-82,89.


 


Li Q, Wang F D, Wang G Q,  et al. Wire and arc additive manufacturing of lightweight metal components in aeronautics and astronautics[J]. Aeronautical Manufacturing Technology, 2018,61(3):74-82,89.


[6]王彤. 钢结构焊接残余应力及变形控制分析[J].内燃机与配件,2018,3):117-118.


 


Wang T. Analysis of welding residual stress and deformation control of steel structure[J]. Internal Combustion Engine & Parts, 2018,(3):117-118.


 


[7]唐景富. 堆焊技术及实例[M]. 北京:机械工业出版社, 2010.


 


Tang J F. Surfacing Welding Technology and Example[M]. Beijing: China Machine Press, 2010.


 


[8]高占远, 郭彦林.大型或复杂钢结构焊接残余应力与变形研究进展[J].建筑科学与工程学报,2016,335):108-119.


 


Gao Z Y, Guo Y L. Research progress on welding residual stress and deformation in large or complex steel structure[J]. Journal of Architecture and Civil Engineering, 2016, 33(5):108-119.


 


[9]Branco C M, Infante V, Baptista R. Fatigue behaviour of welded joints with cracks, repaired by hammer peening [J]. Fatigue & Fracture of Engineering Materials & Structures, 2010, 27 (9):785-798.


 


[10]权国政, 赵江,施瑞菊,等.多层熔丝增材数值模拟及残余应力控制研究[J].机械科学与技术, 2020,39(4):623-628.


 


Quan G Z, Zhao J, Shi R J, et al. Study on contact impact method and parameter control of residual stress elim-ination in fuse products[J]. Mechanical Science & Technology for Aerospace Engineering, 2020,39(4):623-628.


 


[11]田锡唐, 刘雪松.随焊锤击对LY12CZ焊接接头显微组织的影响[J].哈尔滨工业大学学报,2001,(4):442-446.


 


Tian X T, Liu X S. Influence of welding trailing with peening on microstructure of LY12CZ joints[J]. Journal of Harbin Institute of Technology, 2001,(4):442-446.


 


[12]冯麟涵, 汪玉,张磊.舰船设备抗冲击能力的可靠性分析[J].振动与冲击,2013,321):140-144.


 


Feng L H, Wang Y, Zhang L. Reliability analysis for shock resistance ability of shipboard equipments[J]. Journal of Vibration and Shock, 2013, 32(1):140-144.


 


[13]王华杰. 基于非线性瞬态动力学的曲柄滑块机构冲击强度仿真分析[J].机械传动,2015,1):139-141.


 


Wang H J. Impact strength simulation analysis of the slider-crank mechanism based on the transient dynamics involved nonlinearity[J]. Journal of Mechanical Transmission, 2015,(1):139-141.


 


[14]秦斌, 周浩,杜康,.基于RBF网络的风电机组变桨距滑模控制[J].电工技术学报,2013,285):37-41.


 


Qin B, Zhou H, Du K, et al. Sliding mode control of pitch angle based on RBF neural-network[J]. Transactions of China Electrotechnical Society, 2013, 28(5):37-41.


 


 


服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9