网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
某大型液压装备的液压冲击装置的设计及试验
英文标题:Design and test on hydraulic impact device for a large hydraulic equipment
作者:任丰兰1 2 仵坤2 
单位:1.常德职业技术学院 机电系 2.中南大学 机电工程学院 
关键词:大型液压装备 液压冲击 卸荷冲击 测控系统 冲击性能 
分类号:TH137.9
出版年,卷(期):页码:2022,47(12):161-167
摘要:

 针对大型液压装备在工作过程中的液压冲击会对设备产生巨大的危害等问题,设计了某大型液压装备的液压冲击装置,对该装置的功能、指标要求进行了介绍,对典型元件进行了计算与选型,并对液压冲击进行了计算,完成了其电气控制系统、测控系统和基于HMI的人机交互系统的设计。以卸荷冲击压力测试工位为例进行了两组试验,试验表明:当系统压力为3 MPa时,开口度为50%时的流量冲击较开口度为100%时大15%左右;当系统压力为5 MPa时却相反,开口度为50%时的流量冲击较开口度为100%时小30%左右。设计的大型液压装备的液压冲击装置实现了对液压冲击的性能参数的分析和测试,这对大型液压装备的液压冲击功能分析、减少液压冲击对设备的影响有着重要的意义。

 For the problem that the hydraulic impact of large hydraulic equipment will cause huge harm to equipment during the working process, a hydraulic impact device for a large hydraulic equipment was designed. Then, the functions and index requirements of the device were introduced, and the typical components were calculated and selected. Furthermore, the hydraulic impact was calculated, and the design of its electrical control system, measurement and control system and human-computer interaction system based on HMI was completed. And two sets of tests were carried out by taking the unloading impact pressure test station as an example. The results show that when the system pressure is 3 MPa and the opening degree is 50%, the flow impact is about 15% greater than that when the opening degree is 100%. However, when the pressure is 5 MPa, it is the opposite. When the opening degree is 50%, the flow impact is about 30% less than that when the opening degree is 100%. Thus, the designed hydraulic impact device for a large hydraulic equipment realizes the analysis and test of the performance parameters for hydraulic impact, which is of great significance on the analysis of hydraulic impact function of large hydraulic equipment and reducing the impact of hydraulic impact on the equipment.

基金项目:
高性能复杂制造国家重点实验室自主研究项目(2013ZZTS030);湖南省自然科学基金资助项目(2020JJ7001)
作者简介:
任丰兰(1976-),男,硕士,副教授 E-mail:fenglanren@163.com
参考文献:

 [1]曹立波, 林君哲.大型轧制伺服液压缸试验台系统的设计与研究[J].机械设计与制造,2018,(7:151-153157.


 


Cao L BLin J Z. Design and research on the large rolling servo hydraulic cylinder test platform system[J].Machinery Design Manufacture, 2018,(7:151-153157.


 


[2]鲁苗, 陈柏金,柳龙,. 泵控锻造液压机控制系统研究[J]. 锻压技术,2021,46(7):140-145.


 


Lu MChen B JLiu Let al. Research on control system of pump-controlled forging hydraulic press[J]. Forging & Stamping Technology2021,46(7):140-145.


 


[3]张军, 迪茹侠,顾海荣,等. 基于流量控制的负载敏感液压系统防冲击试验[J].广西大学学报:自然科学版,201742(6): 1993- 2000.


 


Zhang JDi R XGu H Ret alExperiment on anti-shock method of load-sensing hydraulic system based on hydraulic flow control[J]. Journal of Guangxi University: Natural Science Edition201742(6):1993-2000.


 


[4]陈罡, 李文龙,董祥义,. 100 MN橄榄式缠绕液压机结构设计与特性研究[J]. 锻压技术,2021,46(2):166-172.


 


Chen GLi W LDong X Yet al. Structural design and characteristic research of 100 MN olivary winding hydraulic press [J]. Forging & Stamping Technology2021,46(2):166-172.


 


[5]周颖, 潘一山,张建卓,等. 高压大流量安全阀卸荷过程模型构建及仿真分析[J].辽宁工程技术大学学报:自然科学版, 2018,37(1)136-140.


 


Zhou Y, Pan Y S, Zhang J Z, et al. Model building for unloading process of high pressure large flow relief valve and its simulation analysis [J].Journal of Liaoning Technical University: Natural Science 2018,37(1)136-140.


 


[6]张嘉鹭, 赵继云.液压支架大流量安全阀冲击特性试验系统设计与分析[J].液压与气动,2021, 45(11): 62-68.


 


Zhang J L,Zhao J Y. Design and analysis on impact characteristic test system of hydraulic support large flow safety valve [J]. Chinese Hydraulics & Pneumatics2021, 45(11): 62-68.


 


[7]赵小龙, 赵丁选,王建涛,等.定量泵负载敏感系统卸荷压力冲击抑制研究[J]. , 2020,51(9):408-417,407.


 


Zhao X LZhao D XWang J Tet al. Suppression of unloading pressure shock in load sensitive system of constant displacement pump[J]. Transactions of the Chinese Society for Agricultural Machinery,2020,51(9):408-417,407.


 


[8]赵燕, 韩家威,张笑. 负载敏感液压系统的防冲击技术研究[J].机床与液压,201745(20): 89-92.


 


Zhao YHan J WZhang X. Research on anti-impact technology of load-sensing hydraulic system [J].Machine Tool Hydraulics201745(20): 89-92.


 


[9]贾江波. 液压泵参数对削减负载敏感系统冲击的影响规律仿真研究[D].西安: 长安大学,2019.


 


Jia J B. Simulation Study on Influence of Hydraulic Pump Parameters on Load Sensitive System Impact Reduction [D].Xian: Changan University2019.


 


[10]杨建新, 赵锐,姚玉维.液压支架单向阀卸荷冲击蓄能测试装置研究[J].机床与液压,2021,4913107-111.


 


Yang J X, Zhao R,Yao Y W.Research on testing device for unloading impact energy storage of hydraulic support check valve[J]. Machine Tool Hydraulics2021,4913107-111.


 


[11]郑智剑,朱光伟,吴尔苗. 液压泵、马达综合性能试验台的设计及不确定度分析[J].液压与气动,2020,(10): 119-126.


 


Zheng Z JZhu G WWu E M. Design and uncertainty analysis of the comprehensive performance test platform for hydraulic pump and motor[J]. Chinese Hydraulics & Pneumatics2020,(10): 119-126.


 


[12]何沛恒, 邓斌, 杨帆, .一种节能型电磁换向阀液压冲击仿真[J].液压与气动,2021, 45(7):143-153.


 


He P H, Deng B, Yang F, et al. Hydraulic impact simulation of energy saving solenoid directional valver[J]. Chinese Hydraulics & Pneumatics2021, 45(7): 143-153.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9