网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
平方函数曲边负泊松比蜂窝结构面内冲击性能研究
英文标题:Research on in-plane impact performance for negative Poisson′s ratio honeycomb structure with square function curved edge
作者:徐峰祥1 2 管一杰1 2 邹震1 2 刘艳雄1 2 吴磊3 涂繁3 
单位:1.武汉理工大学 现代汽车零部件技术湖北省重点实验室  2. 武汉理工大学 汽车零部件技术湖北省协同创新中心 3. 武汉华夏精冲技术有限公司 
关键词:平方函数曲边 负泊松比 蜂窝结构 面内冲击性能 动态响应 能量吸收 
分类号:O347
出版年,卷(期):页码:2022,47(12):212-220
摘要:

 在传统内凹六边形蜂窝结构的基础上,提出了一种平方函数曲边的负泊松比蜂窝结构。研究了平方函数曲边系数与其等效泊松比之间的关系,确定了泊松比为负值时平方函数曲边系数的范围。采用有限元方法揭示了冲击速度对平方函数曲边的蜂窝结构变形模式和动态响应的影响规律,并分析了蜂窝结构的能量吸收情况。研究结果表明:引入平方函数曲边的构型具有较为良好的负泊松比效应,并且其等效泊松比与平方函数曲边系数呈一定的线性关系。冲击速度对结构冲击端应力的影响要大于固定端,处于中高速冲击时,平方函数曲边结构的平台区域的震荡幅度也显著增大。同时,该构型还具备优于内六边形构型的吸能特性,随着冲击速度的提高,结构的吸能特性也明显增强。

 Based on the traditional concave hexagonal honeycomb structure, a negative Poissons ratio honeycomb structure with square function curved edge was proposed. Then, the relationship between square function curved edge coefficient and its equivalent Poissons ratio was studied, and when the Poissons ratio was negative, the range of square function curved edge coefficient was determined. Furthermore, the influence laws of impact velocity on the deformation mode and the dynamic response of square function curved-edge honeycomb structure were revealed by using the finite element method, and the energy absorption of honeycomb structure was analyzed. The research results show that the configuration of introducing the square function curved edge has a relatively good negative Poissons ratio effect, and its equivalent Poissons ratio has a certain linear relationship with the coefficient of square function curved edge. The influence of impact velocity on the stress at the impact end of structure is greater than that at the fixed end. When the impact is at medium and high speeds, the vibration amplitude of platform area for the square function curved edge structure also increases significantly. At the same time, this configuration also has better energy absorption characteristics than the inner hexagon configuration. With the increasing of impact velocity, the energy absorption characteristics of the structure are also significantly enhanced.

基金项目:
国家自然科学基金资助项目(51975438);高等学校学科创新引智计划(B17034)
作者简介:
徐峰祥(1985-),男,博士,副教授 E-mail:xufx@whut.edu.cn 通信作者:刘艳雄(1985-),男,博士,副教授 E-mail: liuyx@whut.edu.cn
参考文献:

 [1]于靖军, 谢岩,裴旭.负泊松比超材料研究进展[J].机械工程学报,2018,54(13):1-14.


 


Yu J J, Xie Y, Pei X. Research progress of negative Poissons ratio metamaterials[J]. Chinese Journal of Mechanical Engineering, 2018, 54(13):1-14.


 


[2]任鑫, 张相玉,谢亿民.负泊松比材料和结构的研究进展[J].力学学报,2019,51(3):656-687.


 


Ren X, Zhang X Y, Xie Y M. Research progress on materials and structures with negative Poissons ratio[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3):656-687.


 


[3]Johnson W, Reid S R. Metallic energy dissipating systems[J]. Applied Mechanics Reviews, 1978, 31(3):277-288.


 


[4]张新春, 刘颖,张建辉.金属蜂窝材料的面内冲击响应和能量吸收特性[J].功能材料,2013,44(15):2143-2147.


 


Zhang X C, Liu Y, Zhang J H. In-plane crushing response and energy absorption characteristics of metal honeycombs[J]. Journal of Functional Materials, 2013, 44(15):2143-2147.


 


[5]崔世堂, 王波,张科.负泊松比蜂窝面内动态压缩行为与吸能特性研究[J].应用力学学报,2017,34(5):919-924.


 


Cui S T, Wang B, Zhang K. Study on dynamic compression behavior and energy absorption characteristics of honeycomb with negative Poissons ratio[J]. Chinese Journal of Applied Mechanics, 2017, 34(5):919-924.


 


[6]卢子兴, 李康.负泊松比蜂窝动态压溃行为的有限元模拟[J].机械强度,2016,(6):1237-1242.


 


Lu Z X, Li K. Finite element simulation of dynamic collapse behavior of honeycomb with negative Poissons ratio[J]. Mechanical Strength, 2016, (6):1237-1242.


 


[7]侯秀慧, 尹冠生.负泊松比蜂窝抗冲击性能分析[J].机械强度,2016,(5):905-910.


 


Hou X H, Yin G S. Analysis of impact resistance of honeycomb with negative Poissons ratio[J]. Mechanical Strength, 2016, (5):905-910.


 


[8]Prawoto Y. Seeing auxetic materials from the mechanics point of view: A structural review on the negative Poissons ratio[J]. Computational Materials Science, 2012, 58:140-153.


 


[9]Love A E H. A treatise on the mathematical theory of elasticity[J]. Bulletin of the American Mathematical Society, 1909, 34(2): 242-243.


 


[10]Gibson L J, Ashby M F, Schajer G S, et al. The mechanics of two-dimensional cellular materials[J]. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1982, 382(1782): 25-42.


 


[11]Lakes R. Advances in negative Poissons ratio materials[J]. Advanced Materials, 2010, 5(4):293-296.


 


[12]Wan H, Ohtaki H, Kotoska S, et al. A study of negative Poissons ratios in auxetic honeycombs based on a large deflection model[J]. European Journal of Mechanics/A Solids, 2003, 23(1):95-106.


 


[13]Choi J B, Lakes R S. Analysis of elastic modulus of conventional foams and of re-entrant foam materials with a negative Poissons ratio[J].International Journal of Mechanical Sciences, 1995, 37(1):51-59.


 


[14]韩会龙, 张新春.星形节点周期性蜂窝结构的面内动力学响应特性研究[J].振动与冲击,2017,(23):223-231.


 


Han H L, Zhang X C. Research on in-plane dynamic response characteristics of star-shaped node periodic honeycomb structure[J]. Vibration and Shock, 2017, (23):223-231.


 


[15]Li D, Ma J, Dong L, et al. Stiff square structure with a negative Poissons ratio[J]. Materials Letters, 2017, 188(1):149-151.


 


[16]Fu M H, Liu F M, Hu L L. A novel category of 3D chiral material with negative Poissons ratio[J]. Composites Science and Technology, 2018, 160(26):111-118.


 


[17]Liu Z F,Hao W Q, Qin Q H. Buckling and energy absorption of novel pre-folded tubes under axial impacts[J]. Applied Physics A Materials Science & Processing,2017,123(5).


 


[18]邓小林, 刘旺玉.一种负泊松比正弦曲线蜂窝结构的面内冲击动力学分析[J].振动与冲击,2017,36(13):103-109,154.


 


Deng X L, Liu W Y. A brief analysis of in-plane shock dynamics of a negative Poissons ratio sinusoidal honeycomb structure[J]. Journal of Vibration and Shock, 2017, 36(13):103-109154.


 


[19]马芳武, 梁鸿宇,赵颖,.内凹三角形负泊松比材料的面内冲击动力学性能[J].振动与冲击,2019,(17):81-87.


 


Ma F W, Liang H Y, Zhao Y, et al. In-plane shock dynamics performance of concave triangular negative Poissons ratio materials[J]. Journal of Vibration and Shock, 2019, (17):81-87.


 


[20]Carta G, Brun M, Baldi A. Design of a porous material with isotropic negative Poissons ratio[J]. Mechanics of Materials, 2016, 97:67-75.


 


[21]马芳武, 梁鸿宇,赵颖,.内凹三角形负泊松比结构耐撞性多目标优化设计[J].吉林大学学报,2020,50(1):29-35.


 


Ma F W, Liang H Y, Zhao Y, et al. Multi-objective optimization design for crashworthiness of concave triangular structures with negative Poissons ratio[J]. Journal of Jilin University, 2020, 50(1):29-35.


 


[22]吕亦乐. 负泊松比超材料的减振性能研究[D].成都:电子科技大学,2019.


 


Lyu Y L. Research on the Vibration Damping Performance of Negative Poissons Ratio Metamaterials[D]. Chengdu: University of Electronic Science and Technology of China, 2019.


 


[23]任晨辉, 杨德庆.二维负刚度负泊松比超材料及其力学性能[J].哈尔滨工程大学学报,2020,41(8):1129-1135.


 


Ren C H, Yang D Q. Two-dimensional negative stiffness and negative Poissons ratio metamaterial and its mechanical properties[J]. Journal of Harbin Engineering University, 2020, 41(8):1129-1135.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9