网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
核电阀门用不锈钢热变形行为研究及应用
英文标题:Research and application on thermal deformation behavior for stainless steel of nuclear power valve
作者:王行1 2 3 王爱琴1 李昌义2 3 谢敬佩1  禹兴胜2 3  宋玉冰2 3 
单位:1.河南科技大学 材料科学与工程学院 2.洛阳中重铸锻有限责任公司  3.中信重工机械股份有限公司 
关键词:F316H不锈钢  高温流变应力  本构模型  热加工图  动态再结晶 
分类号:TG316
出版年,卷(期):页码:2022,47(12):221-226
摘要:

 针对大型特厚F316H不锈钢阀门锻件易出现粗晶、混晶和探伤无底波等难题,对其高温下的流变行为进行了研究,以探索最佳的热加工变形工艺参数来指导实际生产应用。采用Gleeble-1500D热模拟试验机,在应变速率为0.001~1 s-1、变形温度为950~1250 ℃条件下开展了热压缩变形试验。基于Arrhenius模型,建立了高温流变应力本构方程,并计算得到热变形激活能为393.857 kJ·mol-1。基于DMM动态材料模型,建立了应变量为0.8的热加工图,在变形温度为1100~1150 ℃、应变速率为0.005~0.01 s-1时,功率耗散因子达到峰值,结合微观金相分析,该变形条件下晶粒发生了充分的动态再结晶,可作为热加工的主加工区域。结合热加工图,设计了核电不锈钢阀体锻件(规格为12寸)的锻造工艺,并经生产验证得到了晶粒度、无损探伤和力学性能优异的锻件。

 For the problems that coarse grains, mixed grains and without bottom wave in detection of large extra-thick F316H stainless steel valve forgings, the thermal rheological behavior at high temperature was studied to explore the best thermal working process parameters so as to guide practical production and application, and the thermal compression deformation tests were carried out by the thermal simulation tester Gleeble-1500D under the conditions of the strain rates of 0.001-1 s-1 and the deformation temperatures of 950-1250 . Then, the constitutive equation of high temperature rheological stress was established based on the Arrhenius model, and the thermal deformation activation energy was calculated to be 393.857 kJ·mol-1. Furthermore, the thermal processing map with the strain of  0.8 was established based on the DMM dynamic material model, and when the deformation temperature was 1100-1150 and the strain rate was 0.005-0.01 s-1, the power dissipation factor reached the peak value. Combined with microscopic metallographic analysis, the grains within this range underwent sufficient dynamic recrystallization, which could be used as the main processing area of thermal working. Finally, combined with the thermal processing map, the forging process of nuclear power stainless steel valve body forgings (12 inches in size) was designed, and the forgings with excellent grain size, non-destructive flaw detection and mechanical properties could be obtained through the production verification.

基金项目:
洛阳市科技重大专项(2101005A)
作者简介:
王行(1989-),男,博士研究生,工程师 E-mail:wanghangred@163.com 通信作者:王爱琴(1964-),女,博士,教授 E-mail:aiqin_wang888@163.com
参考文献:

 [1]施业寿. 核电阀门国产化分析[J]. 阀门, 2013(1):31-33.


 


Shi Y S. The localization of nuclear valves[J]. Valve, 2013, (1): 31-33.


 


[2]赵昌盛. 不锈钢的应用及热处理[M]. 北京: 机械工业出版社, 2010.


 


Zhao C S. Application and Heat Treatment of Stainless Steel[M]. Beijing: China Machine Press, 2010.


 


[3]王艺南, 兰亮云, 张一婷, . 轧态904L超级奥氏体不锈钢动态再结晶行为[J]. 塑性工程学报, 2021, 28(7): 138-144.


 


Wang Y N, Lan L Y, Zhang Y T, et al. Dynamic recrystallization behavior of as-rolled 904L super austenitic stainless steel[J]. Journal of Plasticity Engineering, 2021, 28(7): 138-144.


 


[4]Babu K A, Mandal S, Athreya C N, et al. Hot deformation characteristics and processing map of a phosphorous modified super austenitic stainless steel[J]. Materials & Design, 2017, 115: 262-275.


 


[5]齐珂, 隋大山, 陈飞, . 316LN钢奥氏体晶粒长大模型[J]. 塑性工程学报, 2014, 21(3): 98-103.


 


Qi K, Sui D S, Chen F, et al. Study on austenite grain growth behavior of 316LN steel[J]. Journal of Plasticity Engineering, 2014, 21(3): 98-103.


 


[6]吴从风, 李时磊, 张海龙, . 316LN奥氏体不锈钢的高温拉伸断裂行为[J]. 材料研究学报, 2014, 28(7): 481-489.


 


Wu C F, Li S L, Zhang H L, et al. On high temperature tensile fracture behavior of 316LN austenitic stainless steel[J]. Chinese Journal of Materials Research, 2014, 28(7): 481-489.


 


[7]赵晓东. 304不锈钢热变形条件下动态再结晶行为研究[D]. 太原:太原科技大学, 2009.


 


Zhao X D. Study on Dynamic Recrystallization Behavior of 304 Stainless Steel Under Hot Deformation[D]. Taiyuan: Taiyuan University of Science and Technology, 2009.


 


[8]Wang C J, Feng H, Zheng W J, et al. Dynamic recrystallization behavior and microstructure evolution of AISI 304N stainless steel[J]. Journal of Iron and Steel Research, 2013, 20(10): 107-112.


 


[9]裴文娇, 郭训忠, 王文涛, . 316L奥氏体不锈钢的高温流变行为[J]. 塑性工程学报, 2014, 21(3): 104-110.


 


Pei W J, Guo X Z, Wang W T, et al. Flow behaviors of 316L stainless steel at high temperature[J]. Journal of Plasticity Engineering, 2014, 21(3): 104-110.


 


[10]胡峰. 含铌奥氏体不锈钢热变形行为及热加工图[D]. 镇江: 江苏大学, 2018.


 


Hu F. Hot Deformation Behavior and Hot Working Diagram of Nb Containing Austenitic Stainless Steel[D]. Zhenjiang: Jiangsu University, 2018.


 


[11]齐珂. 核电用钢316LN动态再结晶行为试验研究与数值模拟[D]. 上海: 上海交通大学, 2014.


 


Qi K. Experimental and Numerical Study on Dynamic Recrystallization of 316LN Nuclear Power Steel[D]. Shanghai: Shanghai Jiao Tong University, 2014.


 


[12]Zener C, Hollomon J H. Effect of strain rate upon plastic flow of stee[J]. Journal of Applied Physics, 1944, 15(1): 22-32.


 


[13]Srinivasan N, Prasad Y V R K. Hot working characteristics of nimonic 75, 80A and 90 superalloys: A comparison using processing maps[J]. Journal of Materials Processing Technology, 1995, 51: 171-192.


 


[14]Gronostajski Z. The deformation processing map for control of microstructure in CuAl9.2Fe3 aluminium bronze[J]. Journal of Materials Processing Technology, 2002, 126(9): 119-124.


 


[15]Prasad Y. Processing maps: A status report[J]. Journal of Materials Engineering and Performance, 2003, 12(6): 638-645.


 


[16]GB/T 63942017, 金属平均晶粒度测定法[S].


 


GB/T 63942017, MetalMethods for estimating the average grain size[S].


 


[17]NB/T 20003.22010, 核电厂核岛机械设备无损检测第2部分:超声检测[S].


 


NB/T 20003.22010, Non-destructive testing for mechanical componentsin nuclear island of nuclear power plantsPart 2: Ultrasonic testing[S].

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9