[1]Handerhan K J, Garrison W M, Moody N R. A comparison of the fracture behavior of two heats of the secondary hardening steel AF1410[J]. Metallurgical Transactions A, 1989, 20(1):105-123.
[2]胡正飞, 吴杏芳,王春旭. 二次强化高CoNi超高强度合金钢的研究近况[J]. 钢铁研究学报, 2001, 13(4): 62-68.
Hu Z F, Wu X F, Wang C X. Recent status of enriched CoNi ultra-high strength steel with secondary hardening[J]. Journal of Iron and Steel Research, 2001, 13(4): 62-68.
[3]Ayer R, Machmeier P. On the characteristics of M2C carbides in the peak hardening regime of AerMet100 steel[J]. Metallurgical and Materials Transactions A, 1998, 28(3): 903-905.
[4]姜越, 尹钟大,朱景川,等. 超高强度马氏体时效钢的发展[J]. 特殊钢, 2004, 25(2):1-5.
Jiang Y, Yin Z D, Zhu J C, et al. Development of ultra-high strength maraging steel[J]. Special Steel, 2004, 25(2):1-5.
[5]周士猛, 程兴旺,张由景,等. 新型超高强度钢的高温形变热处理[J]. 材料工程, 2016, 44(5): 37-41.
Zhou S M, Cheng X W, Zhang Y J, et al. High temperature thermo-mechanical treatment of novel ultra-high strength steel[J]. Journal of Materials Engineering, 2016, 44(5): 37-41.
[6]王春旭, 刘宪民,田志凌,等. 超高强度23Co14Ni12Cr3MoE钢的热变形行为研究[J]. 航空材料学报,2011, 31(6): 19-23.
Wang C X, Liu X M, Tian Z L, et al. Hot deformation behavior of 23Co14Ni12Cr3MoE ultra-high strength steel[J]. Journal of Aeronautical Materials, 2011, 31(6): 19-23.
[7]任书杰, 罗飞,田野,等. A100超高强度钢的流变应力曲线修正与唯象本构关系[J]. 材料工程,2019, 47(6): 144-151.
Ren S J, Luo F, Tian Y, et al. Flow stress curve correction and phenomenological constitutive relationship of A100 ultra-high strength steel[J]. Journal of Materials Engineering, 2019, 47(6): 144-151.
[8]刘凯. 300M钢的热态变形特性及其动态再结晶模型研究[D]. 南昌:南昌航空大学, 2012.
Liu K. Investigation on Hot Deformation Feature and Dynamic Recrystallization Models of 300M Steel[D]. Nanchang: Nanchang Hangkong University, 2012.
[9]刘安武, 厉勇,王春旭,等. SAE9310钢热变形行为的研究[J]. 钢铁, 2009, 44(10): 82-86.
Liu A W, Li Y, Wang C X, et al. Investigation on hot deformation behavior of SAE9310 steel[J]. Iron and Steel, 2009, 44(10): 82-86.
[10]李志欣. DT300钢的组织性能及热变形行为研究[D]. 昆明:云南大学, 2012.
Li Z X. Investigation on Microstructure and Mechanical Properties and Hot Deformation Behavior of DT300 Steel[D]. Kunming: Yunnan University, 2012.
[11]王飞, 张英杰,杨卓越. 奥氏体化温度对W、Mo强化超高强度钢强韧性的影响[J]. 金属热处理, 2015, 40(7): 130-132.
Wang F, Zhang Y J, Yang Z Y. Effect of austenitizing temperature on strength-toughness of ultra-high strength steel containing W and Mo[J]. Heat Treatment of Metals, 2015, 40(7): 130-132.
[12]余永宁. 材料科学基础[M]. 北京:高等教育出版社,2006.
Yu Y N. Fundamentals of Materials Science and Engineering[M]. Beijing: Higher Education Press, 2006.
[13]王飞, 张英杰,杨卓越, 等. 新型二次硬化超高强度钢的高温塑性及热加工图[J]. 塑性工程学报, 2016, 23(6): 137-142.
Wang F, Zhang Y J, Yang Z Y, et al. Hot plasticity and processing maps of new secondary-hardening ultra-high strength steel[J]. Journal of Plasticity Engineering, 2016, 23(6): 137-142.
[14]Zener C, Hollomon J H. Effect of strain-rate upon the plastic flow of steel[J]. Appl.Phys., 1944, 15(1): 22-27.
[15]Sellars C M, Tegart W J M G. On the mechanism of hot deformation[J]. Acta Metallurgica, 1966, 14(9): 1136-1138.
[16]Jonas J J, Sellars C M, Tegart W J M G. Strength and structure under hot-working conditions[J]. Metallurgical Reviews, 1969, 14(1): 1-24.
[17]Ziegler H. Progress in Solid Mechanics[M]. New York: Wiley Press, 1963.
[18]Prasad Y V R K, Gegel H L, Doraivelu S M, et al. Modeling of dynamic material behavior in hot deformation: Forging of Ti-6242[J]. Metallurgical and Materials Transactions A, 1984, 15(10): 1883-1892.
[19]王晓辉. USS122超高强度不锈钢热变形行为与强韧化机理的研究[D]. 昆明:昆明理工大学,2015.
Wang X H. Investigation on Hot Deformation Behavior and Strengthening and Toughening Mechanism of USS122 Ultra-high Strength Stainless Steel[D]. Kunming: Kunming University of Science and Technology, 2015.
|