网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
新型中合金超高强度钢的热变形行为
英文标题:Thermal deformation behavior on new medium alloy ultra-high strength steel
作者:宁静1 王敖1 苏杰1 程兴旺2 
单位:1. 钢铁研究总院有限公司 特殊钢研究所 2. 北京理工大学 材料学院 
关键词:超高强度钢 热变形 本构方程 热加工图 再结晶 
分类号:TG142.41
出版年,卷(期):页码:2022,47(12):234-239
摘要:

 采用Gleeble-3800热模拟试验机研究了含有W、Mo等多种碳化物形成元素的新型中合金超高强度钢的热变形行为,变形温度为800~1200 ℃,应变速率为0.01~10 s-1,最大应变量为0.7。热模拟试验得到了试验钢的高温流变应力曲线,其变形抗力随变形温度的降低和应变速率的提高而增加。在变形温度1000 ℃以上进行热压缩时,试验钢可发生动态再结晶;变形温度的升高会促进晶粒粗化及二次再结晶的发生,而应变速率的提升有利于促进再结晶晶粒的细化和均匀化。根据试验钢的高温流变应力曲线,计算出试验钢的热加工本构方程,并建立了真应变为0.4的热加工图。结合微观组织演变的分析结果,得出试验钢的最佳热加工区域应为:变形温度为1000~1100 ℃、应变速率为1~10 s-1。

 The hot deformation behavior of new medium alloy ultra-high strength steel containing W, Mo and other carbide formers was studied by Gleeble-3800 thermal simulator under  the deformation temperature of 800 ℃-1200 ℃, the strain rate of 0.01-10 s-1, and the maximum strain of 0.7, the rheological stress curves at high temperature of test steel were obtained, which showed that the deformation resistance of test steel increased with the decreasing of deformation temperature and the increasing of deformation rate. When the test steel was hot compressed at a deformation temperature above 1000 ℃, it underwent dynamic recrystallization, and the grain coarsening and secondary recrystallization were promoted by increasing the deformation temperature, while the grain refinement and homogenization of recrystallized grains were promoted beneficially by increasing the deformation rate. According to the rheological stress curve at high temperature of test steel, the hot processing constitutive equation of test steel was calculated, and the hot processing diagram with the true strain of 0.4 was established. Combined with the analysis result of microstructure evolution, the optimum hot processing area of test steel is that the deformation temperature is 1000-1100 ℃ and the strain rate is 1-10 s-1.

基金项目:
作者简介:
宁静(1988-),女,硕士,高级工程师 E-mail:ningjing@nercast.com
参考文献:

 [1]Handerhan K J, Garrison W M, Moody N R. A comparison of the fracture behavior of two heats of the secondary hardening steel AF1410[J]. Metallurgical Transactions A, 1989, 20(1):105-123.


 


[2]胡正飞, 吴杏芳,王春旭. 二次强化高CoNi超高强度合金钢的研究近况[J]. 钢铁研究学报, 2001, 13(4): 62-68.


 


Hu Z F, Wu X F, Wang C X. Recent status of enriched CoNi ultra-high strength steel with secondary hardening[J]. Journal of Iron and Steel Research, 2001, 13(4): 62-68.


 


[3]Ayer R, Machmeier P. On the characteristics of M2C carbides in the peak hardening regime of AerMet100 steel[J]. Metallurgical and Materials Transactions A, 1998, 28(3): 903-905.


 


[4]姜越, 尹钟大,朱景川,等. 超高强度马氏体时效钢的发展[J]. 特殊钢, 2004, 25(2):1-5.


 


Jiang Y, Yin Z D, Zhu J C, et al. Development of ultra-high strength maraging steel[J]. Special Steel, 2004, 25(2):1-5.


 


[5]周士猛, 程兴旺,张由景,等. 新型超高强度钢的高温形变热处理[J]. 材料工程, 2016, 44(5): 37-41.


 


Zhou S M, Cheng X W, Zhang Y J, et al. High temperature thermo-mechanical treatment of novel ultra-high strength steel[J]. Journal of Materials Engineering, 2016, 44(5): 37-41.


 


[6]王春旭, 刘宪民,田志凌,等. 超高强度23Co14Ni12Cr3MoE钢的热变形行为研究[J]. 航空材料学报,2011, 31(6): 19-23.


 


Wang C X, Liu X M, Tian Z L, et al. Hot deformation behavior of 23Co14Ni12Cr3MoE ultra-high strength steel[J]. Journal of Aeronautical Materials, 2011, 31(6): 19-23.


 


[7]任书杰, 罗飞,田野,. A100超高强度钢的流变应力曲线修正与唯象本构关系[J]. 材料工程,2019, 47(6): 144-151.


 


Ren S J, Luo F, Tian Y, et al. Flow stress curve correction and phenomenological constitutive relationship of A100 ultra-high strength steel[J]. Journal of Materials Engineering, 2019, 47(6): 144-151.


 


[8]刘凯. 300M钢的热态变形特性及其动态再结晶模型研究[D]. 南昌:南昌航空大学, 2012.


 


Liu K. Investigation on Hot Deformation Feature and Dynamic Recrystallization Models of 300M Steel[D]. Nanchang: Nanchang Hangkong University, 2012.


 


[9]刘安武, 厉勇,王春旭,等. SAE9310钢热变形行为的研究[J]. 钢铁, 2009, 44(10): 82-86.


 


Liu A W, Li Y, Wang C X, et al. Investigation on hot deformation behavior of SAE9310 steel[J]. Iron and Steel, 2009, 44(10): 82-86.


 


[10]李志欣. DT300钢的组织性能及热变形行为研究[D]. 昆明:云南大学, 2012.


 


Li Z X. Investigation on Microstructure and Mechanical Properties and Hot Deformation Behavior of DT300 Steel[D]. Kunming: Yunnan University, 2012.


 


[11]王飞, 张英杰,杨卓越. 奥氏体化温度对WMo强化超高强度钢强韧性的影响[J]. 金属热处理, 2015, 40(7): 130-132.


 


Wang F, Zhang Y J, Yang Z Y. Effect of austenitizing temperature on strength-toughness of ultra-high strength steel containing W and Mo[J]. Heat Treatment of Metals, 2015, 40(7): 130-132.


 


[12]余永宁. 材料科学基础[M]. 北京:高等教育出版社,2006.


 


Yu Y N. Fundamentals of Materials Science and Engineering[M]. Beijing: Higher Education Press, 2006.


 


[13]王飞, 张英杰,杨卓越, . 新型二次硬化超高强度钢的高温塑性及热加工图[J]. 塑性工程学报, 2016, 23(6): 137-142.


 


Wang F, Zhang Y J, Yang Z Y, et al. Hot plasticity and processing maps of new secondary-hardening ultra-high strength steel[J]. Journal of Plasticity Engineering, 2016, 23(6): 137-142.


 


[14]Zener C, Hollomon J H. Effect of strain-rate upon the plastic flow of steel[J]. Appl.Phys., 1944, 15(1): 22-27.


 


[15]Sellars C M, Tegart W J M G. On the mechanism of hot deformation[J]. Acta Metallurgica, 1966, 14(9): 1136-1138.


 


[16]Jonas J J, Sellars C M, Tegart W J M G. Strength and structure under hot-working conditions[J]. Metallurgical Reviews, 1969, 14(1): 1-24.


 


[17]Ziegler H. Progress in Solid Mechanics[M]. New York: Wiley Press, 1963.


 


[18]Prasad Y V R K, Gegel H L, Doraivelu S M, et al. Modeling of dynamic material behavior in hot deformation: Forging of Ti-6242[J]. Metallurgical and Materials Transactions A, 1984, 15(10): 1883-1892.


 


[19]王晓辉. USS122超高强度不锈钢热变形行为与强韧化机理的研究[D]. 昆明:昆明理工大学,2015.


 


Wang X H. Investigation on Hot Deformation Behavior and Strengthening and Toughening Mechanism of USS122 Ultra-high Strength Stainless Steel[D]. Kunming: Kunming University of Science and Technology, 2015.

服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9