[1]孙立喜, 刘晓烈,潘辉. 球墨铸铁在汽车覆盖件拉伸模中的应用[J]. 金属材料与冶金工程, 2008, (4): 11-13.
Sun L X, Liu X L, Pan H. Application of ductile iron in drawing die of automobile panel[J]. Metal Materials and Metallurgy Engineering, 2008, (4): 11-13.
[2]孙加林, 陈君才,周融,等. 碳钢球化体的激光相变硬化数学模拟[J]. 昆明工学院学报, 1993, (4): 25-31.
Sun J L, Chen J C, Zhou R, et al. Mathematical simulation of laser phase change hardening of spheroidized carbon steel[J]. Journal of Kunming Institute of Technology, 1993, (4): 25-31.
[3]Yang Y S, Na S J. Effect of transformation plasticity on residual stress fields in laser surface hardening treatment[J]. Journal of Heat Treating, 2008, 9(1): 49-56.
[4]郭怡晖. 球墨铸铁QT600-3激光相变硬化数值模拟与试验研究[D]. 长沙: 湖南大学, 2010.
Guo Y H. Numerical Simulation and Experimental Study on the Laser Transformation Hardening of Ductile Cast Iron QT600-3[D]. Changsha: Hunan University, 2010.
[5]尹博. GGG70L激光表面淬火工艺参数及淬火层性能研究[D]. 天津: 天津理工大学, 2012.
Yin B. Study on the Process Parameters and Quenched Layer Performance of Laser Surface Hardening of GGG70L[D]. Tianjin: Tianjin University of Technology, 2012.
[6]刘宏斌, 沈喜堂. 激光淬火、感应淬火和火焰淬火对模具变形的影响[J]. 汽车工艺与材料, 2016, (7): 22-24.
Liu H B, Shen X T. Influence of laser quenching, induction quenching and flame quenching on die deformation[J]. Automobile Technology and Material, 2016, (7): 22-24.
[7]夏子凡. 高磷铸铁激光淬火技术研究[D]. 镇江: 江苏科技大学, 2019.
Xia Z F. Study on Laser Quenching Technology of High Phosphorus Cast Iron[D]. Zhenjiang: Jiangsu University of Science and Technology, 2019.
[8]Casalino G, Moradi M, Moghadam M K, et al. Experimental and numerical study of AISI 4130 steel surface hardening by pulsed Nd: YAG laser[J]. Materials, 2019, 12(19): 3136-3136.
[9]Johnson G R,Cook W H. A constitutive model and data for metals subjected to large strains, high strain rates, and high temperatures[J]. Engineering Fracture Mechanics,1983,21:541-548.
[10]Bodner S R, Partom Y. Constitutive equations for elastic-viscoplastic strain-hardening materials[J]. Journal of Applied mechnics, 1975, 42(2): 385-389.
[11]Zener C, Hollomon J H. Effect of strain rate upon plastic flow of steel[J]. Journal of Applied Physics, 1944, 15(1): 22-32.
[12]Shokry A, Gowid S, Kharmanda G. An improved generic Johnson-Cook model for the flow prediction of different categories of alloys at elevated temperatures and dynamic loading conditions[J]. Materials Today Communications, 2021,27:102296.
[13]张龙, 王强, 杨勇彪, 等. 铸态稀土镁合金热变形应变补偿型本构模型[J]. 热加工工艺, 2015, 44(16): 131-134.
Zhang L, Wang Q, Yang Y B, et al. A strain compensation constitutive model for as-cast rare earth magnesium alloy during thermal deformation[J]. Hot Working Technology, 2015, 44(16): 131-134.
[14]朱洪军. 高强韧Ti6246合金热变形行为及应变补偿型本构模型[J]. 金属热处理, 2016, 41(8): 184-188.
Zhu H J. Thermal deformation behavior and strain compensation constitutive model of high strength and toughness Ti6246 alloy[J]. Heat Treatment of Metals, 2016, 41(8): 184-188.
[15]陈勇, 文光奇, 张晓明, 等. 高锰TWIP钢热变形行为及应变补偿型本构方程的建立[J]. 东北大学学报: 自然科学版, 2021, 42(3): 325-332.
Chen Y, Wen G Q, Zhang X M, et al. Establishment of hot deformation behavior and strain compensation constitutive equation for high manganese TWIP steel[J]. Journal of Northeastern University: Natural Science, 2021, 42(3): 325-332.
|