网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
GGG70L球墨铸铁的高温变形行为及其本构模型建立
英文标题:Deformation behavior at high temperature and establishment of constitutive model of GGG70L ductile iron
作者:丁慧莹 管延锦 李玉琦 翟继强 林军 
单位:山东大学 材料液固结构演变与加工教育部重点实验室 
关键词:GGG70L球墨铸铁 变形行为 本构模型 激光表面淬火 应力-应变场 
分类号:TG143.5; TG155.5
出版年,卷(期):页码:2022,47(12):249-255
摘要:

 为了准确获取GGG70L球墨铸铁的本构模型,实现激光表面淬火过程的数值模拟和热处理变形分析,在800~1100 ℃变形温度下分别进行了变形速率为0.010.11 10 s-1的热模拟实验,研究了GGG70L球墨铸铁的变形行为,并基于J-C优化模型及应变补偿型的Arrhenius模型分别建立了GGG70L球墨铸铁的本构模型。结果表明:GGG70L球墨铸铁的软化作用与温度和应变速率呈负相关关系;加工硬化作用与温度呈负相关关系,而与应变速率呈正相关关系。基于应变补偿型的Arrhenius模型的拟合效果较好,平均相对误差仅为5.11%,能够较为准确地描述GGG70L球墨铸铁的变形行为,为研究GGG70L球墨铸铁激光表面淬火过程的应力-应变场的数值模拟奠定了基础。

 In order to obtain the constitutive model of GGG70L ductile iron accurately, realize the numerical simulation of laser surface quenching process and the deformation analysis of heat treatment, the thermal simulation experiments with the deformation rates of 0.01, 0.1, 1 and 10 s-1 at the deformation temperatures of 800-1100 were conducted, and the deformation behavior of GGG70L ductile iron was studied. Then, the constitutive model of GGG70L ductile iron was established based on the J-C optimization model and the strain-compensated Arrhenius model. The results show that the softening effect of GGG70L ductile iron has a negative correlation with temperature and strain rate, and the work hardening effect has a negative correlation with temperature and a positive correlation with strain rate. The fitting effect based on the strain-compensated Arrhenius model is better, and the average relative error is only 5.11%, which describes the deformation behavior of GGG70L ductile iron more accurately and lays the foundation for the numerical simulation of stress-strain field in the laser surface quenching process of GGG70L ductile iron.

基金项目:
国家重点研发计划(2020YFB2020301)
作者简介:
丁慧莹(1998-),女,硕士研究生 E-mail:202014092@mail.sdu.edu.cn 通信作者:管延锦(1969-),男,博士,教授 E-mail:guan_yanjin@sdu.edu.cn
参考文献:

 [1]孙立喜, 刘晓烈,潘辉. 球墨铸铁在汽车覆盖件拉伸模中的应用[J]. 金属材料与冶金工程, 2008, (4): 11-13.


 


Sun L X, Liu X L, Pan H. Application of ductile iron in drawing die of automobile panel[J]. Metal Materials and Metallurgy Engineering, 2008, (4): 11-13.


 


[2]孙加林, 陈君才,周融,. 碳钢球化体的激光相变硬化数学模拟[J]. 昆明工学院学报, 1993, (4): 25-31.


 


Sun J L, Chen J C, Zhou R, et al. Mathematical simulation of laser phase change hardening of spheroidized carbon steel[J]. Journal of Kunming Institute of Technology, 1993, (4): 25-31.


 


[3]Yang Y S, Na S J. Effect of transformation plasticity on residual stress fields in laser surface hardening treatment[J]. Journal of Heat Treating, 2008, 9(1): 49-56.


 


[4]郭怡晖. 球墨铸铁QT600-3激光相变硬化数值模拟与试验研究[D]. 长沙: 湖南大学, 2010.


 


Guo Y H. Numerical Simulation and Experimental Study on the Laser Transformation Hardening of Ductile Cast Iron QT600-3[D]. Changsha: Hunan University, 2010.


 


[5]尹博. GGG70L激光表面淬火工艺参数及淬火层性能研究[D]. 天津: 天津理工大学, 2012.


 


Yin B. Study on the Process Parameters and Quenched Layer Performance of Laser Surface Hardening of GGG70L[D]. Tianjin: Tianjin University of Technology, 2012.


 


[6]刘宏斌, 沈喜堂. 激光淬火、感应淬火和火焰淬火对模具变形的影响[J]. 汽车工艺与材料, 2016, (7): 22-24.


 


Liu H B, Shen X T. Influence of laser quenching, induction quenching and flame quenching on die deformation[J]. Automobile Technology and Material, 2016, (7): 22-24.


 


[7]夏子凡. 高磷铸铁激光淬火技术研究[D]. 镇江: 江苏科技大学, 2019.


 


Xia Z F. Study on Laser Quenching Technology of High Phosphorus Cast Iron[D]. Zhenjiang: Jiangsu University of Science and Technology, 2019.


 


[8]Casalino G, Moradi M, Moghadam M K, et al. Experimental and numerical study of AISI 4130 steel surface hardening by pulsed Nd: YAG laser[J]. Materials, 2019, 12(19): 3136-3136.


 


[9]Johnson G R,Cook W H. A constitutive model and data for metals subjected to large strains, high strain rates, and high temperatures[J]. Engineering Fracture Mechanics,1983,21:541-548.


 


[10]Bodner S R, Partom Y. Constitutive equations for elastic-viscoplastic strain-hardening materials[J]. Journal of Applied mechnics, 1975, 42(2): 385-389.


 


[11]Zener C, Hollomon J H. Effect of strain rate upon plastic flow of steel[J]. Journal of Applied Physics, 1944, 15(1): 22-32.


 


[12]Shokry A, Gowid S, Kharmanda G. An improved generic Johnson-Cook model for the flow prediction of different categories of alloys at elevated temperatures and dynamic loading conditions[J]. Materials Today Communications, 2021,27:102296.


 


[13]张龙, 王强, 杨勇彪, . 铸态稀土镁合金热变形应变补偿型本构模型[J]. 热加工工艺, 2015, 44(16): 131-134.


 


Zhang L, Wang Q, Yang Y B, et al. A strain compensation constitutive model for as-cast rare earth magnesium alloy during thermal deformation[J]. Hot Working Technology, 2015, 44(16): 131-134.


 


[14]朱洪军. 高强韧Ti6246合金热变形行为及应变补偿型本构模型[J]. 金属热处理, 2016, 41(8): 184-188.


 


Zhu H J. Thermal deformation behavior and strain compensation constitutive model of high strength and toughness Ti6246 alloy[J]. Heat Treatment of Metals, 2016, 41(8): 184-188.


 


[15]陈勇, 文光奇, 张晓明, . 高锰TWIP钢热变形行为及应变补偿型本构方程的建立[J]. 东北大学学报: 自然科学版, 2021, 42(3): 325-332.


 


Chen Y, Wen G Q, Zhang X M, et al. Establishment of hot deformation behavior and strain compensation constitutive equation for high manganese TWIP steel[J]. Journal of Northeastern University: Natural Science, 2021, 42(3): 325-332.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9